Synchronization of Kuramoto oscillators in random complex networks

We study the synchronization of coupled phase oscillators in random complex networks. The topology of the networks is assumed to be vary over time. Here we mainly study the onset of global phase synchronization when the topology switches rapidly over time. We find that the results are, to some extent, different from those in deterministic situations. In particular, the synchronizability of coupled oscillators can be enhanced in ER networks and scale-free networks under fast switching, while in stochastic small-world networks such enhancement is not significant.

[1]  Adilson E. Motter,et al.  Dynamics on Complex Networks and Applications , 2006, cond-mat/0612068.

[2]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[3]  M. Mesbahi,et al.  Agreement over random networks , 2004, CDC.

[4]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[5]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[6]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[7]  Maurizio Porfiri,et al.  Random talk: Random walk and synchronizability in a moving neighborhood network☆ , 2006 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[10]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[11]  J. Kurths,et al.  Hierarchical synchronization in complex networks with heterogeneous degrees. , 2006, Chaos.

[12]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[13]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[14]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[15]  David Hansel Synchronized Chaos in Local Cortical Circuits , 1996, Int. J. Neural Syst..

[16]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[17]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[18]  Hansel,et al.  Synchronization and computation in a chaotic neural network. , 1992, Physical review letters.

[19]  Jianfeng Feng,et al.  Computational neuroscience , 1986, Behavioral and Brain Sciences.

[20]  B. Bollobás The evolution of random graphs , 1984 .

[21]  D.J. Stilwell,et al.  Neighborhood , 2020, Definitions.

[22]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[23]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[24]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.