Cognitive functions of gamma-band activity: memory match and utilization

[1]  Stefan Debener,et al.  Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response , 2004, Clinical Neurophysiology.

[2]  Matthias M. Müller,et al.  Visually induced gamma-band responses in human electroencephalographic activity — a link to animal studies , 1996, Experimental Brain Research.

[3]  Burkhard Maess,et al.  Memory-matches evoke human gamma-responses , 2004, BMC Neuroscience.

[4]  Werner Lutzenberger,et al.  Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory , 2003, NeuroImage.

[5]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[6]  A. Keil,et al.  Modulation of Induced Gamma Band Responses in a Perceptual Learning Task in the Human EEG , 2002, Journal of Cognitive Neuroscience.

[7]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[8]  Guillén Fernández,et al.  Suppression of EEG Gamma Activity May Cause the Attentional Blink , 2002, Consciousness and Cognition.

[9]  C. Elger,et al.  Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling , 2001, Nature Neuroscience.

[10]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[11]  Axel Mecklinger,et al.  Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention , 2001 .

[12]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[13]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[14]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[15]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[16]  D. Strüber,et al.  Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[17]  Role of Gamma Oscillations for Information Processing and Memory Formation in the Neocortex , 2000 .

[18]  E. Basar,et al.  Brain oscillations in perception and memory. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[19]  Christian Hölscher,et al.  Neuronal mechanisms of memory formation : concepts of long-term potentiation and beyond , 2000 .

[20]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[21]  A. Treisman Solutions to the Binding Problem Progress through Controversy and Convergence , 1999, Neuron.

[22]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[23]  Matthias M. Müller,et al.  Human Gamma Band Activity and Perception of a Gestalt , 1999, The Journal of Neuroscience.

[24]  R. Eckhorn,et al.  Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG , 1999, Experimental Brain Research.

[25]  M. Fuchs,et al.  Evidence for independent thalamic and cortical sources involved in the generation of the visual 40 Hz response in humans , 1999, Neuroscience Letters.

[26]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[27]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[28]  S. Grossberg The Link between Brain Learning, Attention, and Consciousness , 1999, Consciousness and Cognition.

[29]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[30]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[31]  T. Bussey High-frequency brain activity : perception or active memory ? , 1999 .

[32]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[33]  J. Pernier,et al.  Induced gamma-band activity during the delay of a visual short-term memory task in humans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  O Bertrand,et al.  Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human , 1997, Neuroreport.

[35]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[36]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[37]  A D Friederici,et al.  Oscillatory neuromagnetic activity induced by language and non-language stimuli. , 1996, Brain research. Cognitive brain research.

[38]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[39]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[40]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Wolf Singer,et al.  Development and Plasticity of Cortical Processing Architectures , 1995, Science.

[42]  N Birbaumer,et al.  Spectral responses in the gamma-band: physiological signs of higher cognitive processes? , 1995, Neuroreport.

[43]  F. Rösler,et al.  Stimulus-induced gamma oscillations: harmonics of alpha activity? , 1995, Neuroreport.

[44]  N. Cowan Attention and Memory: An Integrated Framework , 1995 .

[45]  Roman Bauer,et al.  Different rules of spatial summation from beyond the receptive field for spike rates and oscillation amplitudes in cat visual cortex , 1995, Brain Research.

[46]  W. Singer Development and plasticity of cortical processing architectures. , 1995, Science.

[47]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[48]  Jon Driver,et al.  Parallel detection of Kanizsa subjective figures in the human visual system , 1994, Nature.

[49]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[50]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[51]  S Makeig,et al.  Human auditory evoked gamma-band magnetic fields. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[52]  E. Basar,et al.  A compound P300-40 Hz response of the cat hippocampus. , 1991, The International journal of neuroscience.

[53]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[54]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[55]  R. Bickford,et al.  Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. , 1960, Electroencephalography and clinical neurophysiology.

[56]  E. Adrian Olfactory reactions in the brain of the hedgehog , 1942, The Journal of physiology.