Virtual reality in biological microscopic imaging

Confocal microscopes have recently allowed biologists and biomedical researchers to obtain time dependent 3D data sets of biological. objects, such as cells and tissues. Scientific visualization can provide visual presentations of structural characteristics of these data sets. This paper addresses the role of virtual reality in gaining insight in these presentations. The understanding of structural characteristics of time dependent 3D confocal biological data requires spatial judgments. Perceiving these characteristics is enhanced by using virtual reality technology. The advantage of virtual reality is particularly apparent in the exploration phase of the analysis when the behavior of the underlying biological processes is not a priori known.

[1]  E. Manders,et al.  Spatial Relationship between Transcription Sites and Chromosome Territories , 1999, The Journal of cell biology.

[2]  Colin Ware,et al.  Evaluating stereo and motion cues for visualizing information nets in three dimensions , 1996, TOGS.

[3]  J. Aloimonos,et al.  On the kinetic depth effect , 1989, Biological Cybernetics.

[4]  B Carragher,et al.  Advances in computational image processing for microscopy. , 1996, Journal of structural biology.

[5]  Robert van Liere,et al.  Fast perception-based depth of field rendering , 2000, VRST '00.

[6]  Robert van Liere,et al.  Chromatin decondensation: a case study of tracking features in confocal data , 2001, VIS '01.

[7]  Robert van Liere,et al.  Enhancing fish tank VR , 2000, Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048).

[8]  Paul Milgram,et al.  A Comparative Study of Rotational and Stereoscopic Computer Graphic Depth Cues , 1991 .

[9]  Robert van Liere,et al.  PVR An Architecture for Portable VR Applications , 1999, EGVE.

[10]  Joseph J. LaViola,et al.  Immersive VR for Scientific Visualization: A Progress Report , 2000, IEEE Computer Graphics and Applications.

[11]  Arie E. Kaufman,et al.  Volume visualization in cell biology , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[12]  Richard A. Robb,et al.  Biomedical Imaging, Visualization, and Analysis , 1999 .

[13]  Dan Venolia,et al.  Virtual integral holography , 1990, Other Conferences.

[14]  T. Karr,et al.  Virtual biology in the CAVE. , 2000, Trends in genetics : TIG.

[15]  Robert van Liere,et al.  Interactive visualization of protein dynamics , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[16]  W Carrington,et al.  Digital imaging microscopy of living cells. , 1998, Trends in cell biology.

[17]  Patrick J. Moran,et al.  Crumbs: a virtual environment tracking tool for biological imaging , 1995, Proceedings 1995 Biomedical Visualization.

[18]  J A Aten,et al.  Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. , 1999, Journal of cell science.