Topological fluid mechanics of the formation of the Kármán-vortex street

We explore the two-dimensional flow around a circular cylinder with the aim of elucidating the changes in the topology of the vorticity field that lead to the formation of the Kármán vortex street. Specifically, we analyse the formation and disappearance of extremal points of vorticity, which we consider to be feature points for vortices. The basic vortex creation mechanism is shown to be a topological cusp bifurcation in the vorticity field, where a saddle and an extremum of the vorticity are created simultaneously. We demonstrate that vortices are first created approximately 100 diameters downstream of the cylinder, at a Reynolds number, $Re_{K}$ , which is slightly larger than the critical Reynolds number, $Re_{crit}\approx 46$ , at which the flow becomes time periodic. For $Re$ slightly above $Re_{K}$ , the newly created vortices disappear again a short distance further downstream. As $Re$ is further increased, the points of creation and disappearance move rapidly upstream and downstream, respectively, and the Kármán vortex street persists over increasingly large streamwise distances.

[1]  M. Thompson,et al.  Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate , 2014, Journal of Fluid Mechanics.

[2]  M. Brøns,et al.  Bifurcation of vortex breakdown patterns in a circular cylinder with two rotating covers , 2006, Journal of Fluid Mechanics.

[3]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[4]  Global Mode Behavior of the Streamwise Velocity in Wakes , 1996 .

[5]  M. Thompson,et al.  Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption , 2015 .

[6]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[7]  John M. Cimbala,et al.  Large structure in the far wakes of two-dimensional bluff bodies , 1988, Journal of Fluid Mechanics.

[8]  Sadatoshi Taneda,et al.  Downstream Development of the Wakes behind Cylinders , 1959 .

[9]  Madeleine Coutanceau,et al.  Circular Cylinder Wake Configurations: A Flow Visualization Survey , 1991 .

[10]  B. Jakobsen,et al.  Streamline topology in the near wake of a circular cylinder at moderate Reynolds numbers , 2007, Journal of Fluid Mechanics.

[11]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[12]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[13]  Henryk Kudela,et al.  Eruption of a boundary layer induced by a 2D vortex patch , 2009 .

[14]  A. Spence,et al.  The numerical analysis of bifurcation problems with application to fluid mechanics , 2000, Acta Numerica.

[15]  P. G. Bakker,et al.  Bifurcations in Flow Patterns , 1991 .

[16]  Streamline Topology: Patterns in Fluid Flows and their Bifurcations , 2007 .

[17]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[18]  Fernando L. Ponta,et al.  Numerical experiments on vortex shedding from an oscillating cylinder , 2006 .

[19]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[20]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[21]  A. Roshko,et al.  Vortex formation in the wake of an oscillating cylinder , 1988 .

[22]  C. P. Jackson A finite-element study of the onset of vortex shedding in flow past variously shaped bodies , 1987, Journal of Fluid Mechanics.

[23]  C. Williamson,et al.  Dynamics and Instabilities of Vortex Pairs , 2016 .

[24]  J. Dusek,et al.  A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake , 1994, Journal of Fluid Mechanics.

[25]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[26]  T. Bohr,et al.  Vortex wakes of a flapping foil , 2009, Journal of Fluid Mechanics.

[27]  Halis Bilgil,et al.  Bifurcations and eddy genesis of Stokes flow within a sectorial cavity , 2013 .

[28]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[29]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[30]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[31]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[32]  M. Provansal,et al.  Bénard-von Kármán instability: transient and forced regimes , 1987, Journal of Fluid Mechanics.

[33]  M. Provansal,et al.  The Benard-Von Karman instability : an experimental study near the threshold , 1984 .

[34]  G. Dynnikova,et al.  Mechanism underlying Kármán vortex street breakdown preceding secondary vortex street formation , 2016 .

[35]  B. R. Noack,et al.  Acceleration feature points of unsteady shear flows , 2014, 1401.2462.

[36]  José Eduardo Wesfreid,et al.  On the spatial structure of global modes in wake flow , 1995 .

[37]  A. Zebib Stability of viscous flow past a circular cylinder , 1987 .

[38]  Matthias Heil,et al.  oomph-lib — An Object-Oriented Multi-Physics Finite-Element Library , 2006 .

[39]  Eric D. Siggia,et al.  Evolution and breakdown of a vortex street in two dimensions , 1981, Journal of Fluid Mechanics.

[40]  M. Brøns,et al.  Topology of vortex creation in the cylinder wake , 2010 .

[41]  Paolo Orlandi,et al.  Vortex dipole rebound from a wall , 1990 .

[42]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[43]  T. Kármán,et al.  Ueber den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt , 1911 .