Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities

[1]  G. Morgan,et al.  Positive selection as the unifying force for clonal evolution in multiple myeloma , 2021, Leukemia.

[2]  F. Zhan,et al.  The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma , 2021, Nature Communications.

[3]  Inigo Martincorena,et al.  Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing , 2020, Nature Protocols.

[4]  David J. Reiss,et al.  Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: A cohort study of patients in the Total Therapy clinical trials , 2020, PLoS medicine.

[5]  Andrew Menzies,et al.  Extensive heterogeneity in somatic mutation and selection in the human bladder , 2020, Science.

[6]  P. Campbell,et al.  Revealing the impact of structural variants in multiple myeloma. , 2020, Blood cancer discovery.

[7]  G. Morgan,et al.  Designing Evolutionary-based Interception Strategies to Block the Transition from Precursor Phases to Multiple Myeloma , 2020, Clinical Cancer Research.

[8]  P. Campbell,et al.  APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis , 2020, Nature Genetics.

[9]  Nuno A. Fonseca,et al.  Patterns of somatic structural variation in human cancer genomes , 2020, Nature.

[10]  G. Morgan,et al.  Reconstructing the evolutionary history of multiple myeloma. , 2020, Best practice & research. Clinical haematology.

[11]  Andrew J. Dunford,et al.  Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  R. Siebert,et al.  Timing the initiation of multiple myeloma , 2019, Nature Communications.

[13]  S. Mccarroll,et al.  Abstract 139: Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma , 2019, Tumor Biology.

[14]  G. Morgan,et al.  Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma , 2019, Leukemia.

[15]  N. Bolli,et al.  Moving From Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. , 2019, JAMA oncology.

[16]  L. Linsen,et al.  Raising to the Challenge: Building a Federated Biobank to Accelerate Translational Research—The University Biobank Limburg , 2019, Front. Med..

[17]  J. Cerhan,et al.  Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement , 2019, Blood Cancer Journal.

[18]  Inigo Martincorena,et al.  Somatic mutations and clonal dynamics in healthy and cirrhotic human liver , 2019, Nature.

[19]  R. Pfeiffer,et al.  Association of Immune Marker Changes With Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma. , 2019, JAMA oncology.

[20]  Romina Royo,et al.  A practical guide for mutational signature analysis in hematological malignancies , 2019, Nature Communications.

[21]  Caleb K. Stein,et al.  MYC dysregulation in the progression of multiple myeloma , 2019, Leukemia.

[22]  D. Auclair,et al.  Multiple myeloma immunoglobulin lambda translocations portend poor prognosis , 2019, Nature Communications.

[23]  M. Stratton,et al.  The landscape of somatic mutation in normal colorectal epithelial cells , 2018, Nature.

[24]  P. Campbell,et al.  Genomic landscape and chronological reconstruction of driver events in multiple myeloma , 2018, Nature Communications.

[25]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[26]  M. Stratton,et al.  The mutational landscape of normal human endometrial epithelium , 2018, bioRxiv.

[27]  P. Campbell,et al.  Genomic patterns of progression in smoldering multiple myeloma , 2018, Nature Communications.

[28]  H. Goldschmidt,et al.  Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. , 2018, Blood.

[29]  D. Dingli,et al.  Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria , 2018, Blood Cancer Journal.

[30]  M. Stratton,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[31]  P. A. Futreal,et al.  Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal , 2018, Cell.

[32]  K. Vanhees,et al.  Prognostic Biomarkers in the Progression From MGUS to Multiple Myeloma: A Systematic Review , 2018, Clinical lymphoma, myeloma & leukemia.

[33]  J. Cerhan,et al.  Long‐Term Follow‐up of Monoclonal Gammopathy of Undetermined Significance , 2018, The New England journal of medicine.

[34]  E. Pinatel,et al.  Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines , 2017, Leukemia.

[35]  Benjamin J. Raphael,et al.  The evolutionary history of 2,658 cancers , 2017, Nature.

[36]  Chuang Tan,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[37]  W. Wilson,et al.  Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. , 2017, Blood advances.

[38]  G. Morgan,et al.  The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma , 2017, Haematologica.

[39]  D. Landau,et al.  Genomic complexity of multiple myeloma and its clinical implications , 2017, Nature Reviews Clinical Oncology.

[40]  G. Morgan,et al.  Genomewide profiling of copy‐number alteration in monoclonal gammopathy of undetermined significance , 2016, European journal of haematology.

[41]  S. Gabriel,et al.  Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution , 2015, Nature Communications.

[42]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[43]  Gad Getz,et al.  An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers , 2015, Nature Genetics.

[44]  S. Rajkumar,et al.  Smoldering multiple myeloma. , 2015, Blood.

[45]  Gordon Cook,et al.  APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma , 2014, Nature Communications.

[46]  Hans Erik Johnsen,et al.  International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. , 2014, The Lancet. Oncology.

[47]  A. McKenna,et al.  Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. , 2014, Cancer cell.

[48]  B. Barlogie,et al.  Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). , 2014, Blood.

[49]  D. Hose,et al.  Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[51]  R. Braylan,et al.  Modeling progression risk for smoldering multiple myeloma: results from a prospective clinical study , 2013, Leukemia & lymphoma.

[52]  S. Beà,et al.  SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status , 2012, Leukemia.

[53]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[54]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[55]  N. Gutiérrez,et al.  The Progression from MGUS to Smoldering Myeloma and Eventually to Multiple Myeloma Involves a Clonal Expansion of Genetically Abnormal Plasma Cells , 2010, Clinical Cancer Research.

[56]  B. Weiss,et al.  Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis , 2009, Leukemia.

[57]  T. Therneau,et al.  Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. , 2007, The New England journal of medicine.

[58]  Terry M Therneau,et al.  Prevalence of monoclonal gammopathy of undetermined significance. , 2006, The New England journal of medicine.

[59]  R. Kyle,et al.  Monoclonal gammopathy of undetermined significance. , 1994, Blood reviews.

[60]  J. Waldenström Benign monoclonal gammapathy. , 2009, Acta medica Scandinavica.

[61]  R. Kyle,et al.  Smoldering multiple myeloma. , 1980, The New England journal of medicine.

[62]  R. Kyle,et al.  Monoclonal gammopathy of undetermined significance. Natural history in 241 cases. , 1978, The American journal of medicine.

[63]  R. C. Macridis A review , 1963 .

[64]  C. Laurell,et al.  Studies on "abnormal" serum globulins (M-components) in myeloma, macroglobulinemia and related diseases. , 1961, Acta medica Scandinavica. Supplementum.