Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study

Size distributions of tungsten oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasound were studied by the dynamic light scattering method. Particles produced by this method under ultrasonic cavitation (USC), in the absence of cavitation, and without cavitation followed by ultrasonic processing are compared. The behavior of concentrations of particles of various size groups is comparatively estimated by the data on particle sizes and scattering intensity using the Rayleigh-Gans-Debye approximation. It is shown that ultrasonic processing improves the aggregative stability of suspension; in a suspension of particles produced under USC, large aggregates eventually decay into individual small particles.