Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows

This paper demonstrates that thermodynamically consistent lattice Boltzmann models for single-component multiphase flows can be derived from a kinetic equation using both Enskog's theory for dense fluids and mean-field theory for long-range molecular interaction. The lattice Boltzmann models derived this way satisfy the correct mass, momentum, and energy conservation equations. All the thermodynamic variables in these LBM models are consistent. The strengths and weaknesses of previous lattice Boltzmann multiphase models are analyzed.

[1]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[3]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[4]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[5]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Hirotada Ohashi,et al.  LATTICE-BOLTZMANN SIMULATION OF TWO-PHASE FLUID FLOWS , 1998 .

[7]  Linda Vahala,et al.  Higher Order Isotropic Velocity Grids in Lattice Methods , 1998 .

[8]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[9]  L. Reichl A modern course in statistical physics , 1980 .

[10]  G. Doolen,et al.  Discrete Boltzmann equation model for nonideal gases , 1998 .

[11]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[12]  Shiyi Chen,et al.  Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities , 2001 .

[13]  Qisu Zou,et al.  Derivation of the macroscopic continuum equations for multiphase flow , 1999 .

[14]  Peter V. Coveney,et al.  A ternary lattice Boltzmann model for amphiphilic fluids , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  X. He,et al.  Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.

[16]  Xiaowen Shan,et al.  Multicomponent lattice-Boltzmann model with interparticle interaction , 1995, comp-gas/9503001.

[17]  Raoyang Zhang,et al.  A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability , 1998 .

[18]  Shiyi Chen,et al.  On the three-dimensional Rayleigh–Taylor instability , 1999 .

[19]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[20]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[21]  J. Waals,et al.  J.D. van der Waals : On the continuity of the gaseous and liquid states , 1988 .

[22]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[23]  Li-Shi Luo,et al.  Unified Theory of Lattice Boltzmann Models for Nonideal Gases , 1998 .

[24]  Banavar,et al.  Lattice Boltzmann study of hydrodynamic spinodal decomposition. , 1995, Physical review letters.

[25]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[26]  加藤 鞆一,et al.  C. W. Horton, Jr. and L. E. Reichl 編: Statistical Physics and Chaos in Fusion Plasmas, John Wiley & Sons, New York, 1984, 362ページ, 24×17cm, 25,500円. , 1985 .

[27]  Lattice-Boltzmann algorithm for simulating thermal two-phase flow , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Balasubramanya T. Nadiga,et al.  Investigations of a Two-Phase Fluid Model , 1995, comp-gas/9511003.

[29]  Chen,et al.  Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Nicos Martys,et al.  ENERGY CONSERVING DISCRETE BOLTZMANN EQUATION FOR NONIDEAL SYSTEMS , 1999 .

[31]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[32]  Dimitrios V. Rovas,et al.  An Improved Hydrodynamics Formulation for Multiphase Flow Lattice-Boltzmann Models , 1998 .

[33]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[34]  Ioannis G. Kevrekidis,et al.  Bubble flow simulations with the lattice Boltzmann method , 1999 .

[35]  T. Abe Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation , 1997 .

[36]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.