Electrothermally activated SU-8 microgripper for single cell manipulation in solution

The development of a SU-8-based microgripper that can operate in physiological ionic solutions is presented. The electrothermally activated polymer gripper consists of two "hot-and-cold-arm" actuators that are fabricated in a two-mask surface micromachining process. The high thermal expansion coefficient of SU-8 (52 ppm//spl deg/C) compared to silicon and metals, allows the actuation of the microgripper with small average temperature elevations (10 - 32/spl deg/C) at low voltages (1-2 V). The polymer microgripper can be used for the manipulation of single cells and other biological species in solution with minimal undesired interactions.

[1]  T. Christenson,et al.  Thermo-magnetic metal flexure actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[2]  R. Muller,et al.  Silicon-processed overhanging microgripper , 1992 .

[3]  J. D. Ford,et al.  Thermal conductivities of powder‐filled epoxy resins , 1993 .

[4]  Jeffrey D. Gelorme,et al.  High-aspect-ratio resist for thick-film applications , 1995, Advanced Lithography.

[5]  R. Howe,et al.  Hexsil tweezers for teleoperated micro-assembly , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[6]  M. Despont,et al.  SU-8: a low-cost negative resist for MEMS , 1997 .

[7]  P. Vettiger,et al.  Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[8]  L.J. Guerin,et al.  Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[9]  Wensyang Hsu,et al.  An electro-thermally and laterally driven polysilicon microactuator , 1997 .

[10]  Maria Chiara Carrozza,et al.  The development of a LIGA-microfabricated gripper for micromanipulation tasks , 1998 .

[11]  M. Laudon,et al.  Mechanical characterization of a new high-aspect-ratio near UV-photoresist , 1998 .

[12]  Miko Elwenspoek,et al.  The electrolysis of water: an actuation principle for MEMS with a big opportunity , 1998 .

[13]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[14]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[15]  Chang-Jin Kim,et al.  Pneumatically driven microcage for micro-objects in biological liquid , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[16]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[17]  Shuichi Miyazaki,et al.  SMA microgripper with integrated antagonism , 2000 .

[18]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[19]  Bradley J. Nelson,et al.  Autonomous Injection of Biological Cells Using Visual Servoing , 2000, ISER.

[20]  D. Mills,et al.  Effect of high-aspect-ratio microstructures on cell growth and attachment , 2000, 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451).

[21]  Stephanus Büttgenbach,et al.  A New Micro Pneumatic Actuator for Micromechanical Systems , 2001 .

[22]  G. K. Ananthasuresh,et al.  Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator , 2001 .

[23]  Wen J. Li,et al.  A POLYMER-BASED MICRO THERMAL ACTUATOR FOR MICROMANIPULATIONS IN AQUEOUS ENVIRONMENT , 2002 .

[24]  D. Mooradian,et al.  Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro. , 2002, Journal of biomedical materials research.

[25]  Ingemar Lundström,et al.  The Cell Clinic: Closable Microvials for Single Cell Studies , 2002 .

[26]  Ted Hubbard,et al.  Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators , 2002 .

[27]  Wen J. Li,et al.  A thermally actuated polymer micro robotic gripper for manipulation of biological cells , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[28]  Mark G. Allen,et al.  High Aspect Ratio SU-8 Structures for 3-D Culturing of Neurons , 2003 .

[29]  W.J. Li,et al.  MEMS-fabricated ICPE grippers for aqueous applications , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[30]  Russell H. Taylor,et al.  Preliminary experiments in robot/human cooperative microinjection , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[31]  NANOHOLE ARRAYS FOR PARALLEL PATCH- CLAMPING AND FOCAL DELIVERY OF BIOCHEMICAL FACTORS TO CELLS , 2003 .

[32]  Rebecca S. Shawgo,et al.  Biocompatibility and biofouling of MEMS drug delivery devices. , 2003, Biomaterials.

[33]  Chang-Jin Kim,et al.  Micro-finger articulation by pneumatic parylene balloons , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[34]  P. Bidaud,et al.  Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film , 2003 .