The Process of Stellar Tidal Disruption by Supermassive Black Holes

[1]  J. Guillochon,et al.  Stellar Tidal Disruption Events with Abundances and Realistic Structures (STARS): Library of Fallback Rates , 2020, The Astrophysical Journal.

[2]  K. Hayasaki,et al.  Tidal Disruption Flares from Stars on Marginally Bound and Unbound Orbits , 2020, The Astrophysical Journal.

[3]  T. Piran,et al.  Tidal Disruptions of Main-sequence Stars. I. Observable Quantities and Their Dependence on Stellar and Black Hole Mass , 2020, The Astrophysical Journal.

[4]  T. Piran,et al.  Tidal Disruptions of Main-sequence Stars. IV. Relativistic Effects and Dependence on Black Hole Mass , 2020, The Astrophysical Journal.

[5]  T. Piran,et al.  Tidal Disruptions of Main-sequence Stars. III. Stellar Mass Dependence of the Character of Partial Disruptions , 2020, The Astrophysical Journal.

[6]  Daniel J. Price,et al.  Disc formation from tidal disruption of stars on eccentric orbits by Kerr black holes using GRSPH , 2019, 1910.10154.

[7]  R. Jorgenson,et al.  Keck/OSIRIS IFU Detection of a z ∼ 3 Damped Lyα Host Galaxy , 2019, The Astrophysical Journal.

[8]  G. Lodato,et al.  Gravitational wave emission from unstable accretion discs in tidal disruption events , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  K. Holley-Bockelmann,et al.  Space Based Gravitational Wave Astronomy Beyond LISA , 2019, 1907.11305.

[10]  C. Nixon,et al.  On the Diversity of Fallback Rates from Tidal Disruption Events with Accurate Stellar Structure , 2019, The Astrophysical Journal.

[11]  P. S. Pal,et al.  X-Ray Spectral Evolution of PSR J2032+4127 during the 2017 Periastron Passage , 2019, The Astrophysical Journal.

[12]  J. Guillochon,et al.  The Tidal Disruption of Sun-like Stars by Massive Black Holes , 2019, The Astrophysical Journal.

[13]  C. Nixon,et al.  Partial Stellar Disruption by a Supermassive Black Hole: Is the Light Curve Really Proportional to t−9/4? , 2019, The Astrophysical Journal.

[14]  Binbin Zhang,et al.  The Time-resolved Spectra of Photospheric Emission from a Structured Jet for Gamma-Ray Bursts , 2019, The Astrophysical Journal.

[15]  G. Lodato,et al.  ‘Failed’ tidal disruption events and X-ray flares from the Galactic Centre , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  S. Rosswog,et al.  Tidal disruptions by rotating black holes: effects of spin and impact parameter , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  B. Metzger,et al.  Thawing the frozen-in approximation: implications for self-gravity in deeply plunging tidal disruption events , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[18]  T. Piran,et al.  Radio emission from the unbound debris of tidal disruption events. , 2019, Monthly notices of the Royal Astronomical Society.

[19]  V. Springel,et al.  Hydrodynamical moving-mesh simulations of the tidal disruption of stars by supermassive black holes , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  C. Nixon,et al.  Tidal Disruption Events: The Role of Stellar Spin , 2019, The Astrophysical Journal.

[21]  A. Hamers,et al.  An Analytic Model for Mass Transfer in Binaries with Arbitrary Eccentricity, with Applications to Triple-star Systems , 2018, The Astrophysical Journal.

[22]  E. Rossi,et al.  Streams collision as possible precursor of double tidal disruption events , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  N. Stone,et al.  Stellar tidal disruption events in general relativity , 2018, General Relativity and Gravitation.

[24]  Samuel S. Olivier,et al.  Relativistic Tidal Disruption and Nuclear Ignition of White Dwarf Stars by Intermediate-mass Black Holes , 2018, The Astrophysical Journal.

[25]  Cnrs,et al.  Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates , 2018, 1803.05009.

[26]  R. Spurzem,et al.  Classification of Tidal Disruption Events Based on Stellar Orbital Properties , 2018, 1802.06798.

[27]  E. Ramirez-Ruiz,et al.  Tidal Disruptions of Main-sequence Stars of Varying Mass and Age: Inferences from the Composition of the Fallback Material , 2018, 1801.03497.

[28]  N. Yoshida,et al.  Tidal disruption of a white dwarf by a black hole: the diversity of nucleosynthesis, explosion energy, and the fate of debris streams , 2017, 1705.05526.

[29]  P. Armitage,et al.  Tidal disruption by extreme mass ratio binaries and application to ASASSN-15lh , 2017, 1705.04689.

[30]  E. Phinney,et al.  Gravitational Wave and X-ray Signals from Stellar Disruption by a Massive Black Hole , 2018 .

[31]  E. Ramirez-Ruiz,et al.  Tidal Disruptions of Main Sequence Stars: Inferences from the Composition of the Fallback Material , 2018 .

[32]  A. Tanikawa High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole , 2017, 1711.05451.

[33]  Yanqin Wu Diffusive Tidal Evolution for Migrating Hot Jupiters , 2017, 1710.02542.

[34]  R. Foley,et al.  Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population , 2017, 1707.01559.

[35]  T. Ebisuzaki,et al.  The status of DECIGO , 2017 .

[36]  R. Sari,et al.  Mass loss through the L2 Lagrange point - Application to Main Sequence EMRI , 2017, 1705.01435.

[37]  B. Metzger,et al.  Periodic Accretion-powered Flares from Colliding EMRIs as TDE Imposters , 2017, 1705.00643.

[38]  K. Nomoto,et al.  Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes? , 2017, 1703.08278.

[39]  Y. Levin,et al.  Stellar binaries in galactic nuclei: tidally stimulated mergers followed by tidal disruptions , 2017, 1703.05796.

[40]  J. Guillochon,et al.  The fine line between total and partial tidal disruption events , 2017, 1702.07730.

[41]  J. Guillochon,et al.  Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruption Menu , 2017, 1701.08162.

[42]  S. Rosswog,et al.  Tidal disruptions by rotating black holes : relativistic hydrodynamics with Newtonian codes , 2017, 1701.00303.

[43]  Daniel J. Price,et al.  Magnetic field evolution in tidal disruption events , 2016, 1611.09853.

[44]  M. Sullivan,et al.  The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.

[45]  P. Armitage,et al.  Tidal disruption events from supermassive black hole binaries , 2016, 1608.05711.

[46]  M. Cacciato,et al.  Joint constraints on the Galactic dark matter halo and Galactic Centre from hypervelocity stars , 2016, 1608.02000.

[47]  J. Fuller,et al.  Tidal dissipation and evolution of white dwarfs around massive black holes: an eccentric path to tidal disruption , 2016, 1612.07316.

[48]  Chris L. Fryer,et al.  THE DISTRIBUTION OF RADIOACTIVE 44Ti IN CASSIOPEIA A , 2016, 1612.02774.

[49]  J. Guillochon,et al.  Simulations of Magnetic Fields in Tidally Disrupted Stars , 2016, 1609.08160.

[50]  C. Kochanek Abundance anomalies in tidal disruption events , 2016 .

[51]  T. Piran,et al.  ASASSN-14li: A MODEL TIDAL DISRUPTION EVENT , 2016, 1602.02824.

[52]  G. Lodato,et al.  Bad prospects for the detection of giant stars’ tidal disruption: effect of the ambient medium on bound debris , 2015, 1511.00300.

[53]  Daniel J. Price,et al.  Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events , 2015, 1510.08066.

[54]  A. Loeb,et al.  Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares , 2015, Scientific Reports.

[55]  A. Loeb,et al.  Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes , 2015, 1501.05207.

[56]  Daniel J. Price,et al.  Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes , 2015, 1501.04635.

[57]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[58]  T. O. S. University,et al.  Abundance Anomalies In Tidal Disruption Events , 2015, 1512.03065.

[59]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[60]  E. Berger,et al.  UNBOUND DEBRIS STREAMS AND REMNANTS RESULTING FROM THE TIDAL DISRUPTIONS OF STARS BY SUPERMASSIVE BLACK HOLES , 2015, 1509.08916.

[61]  D. Kasen,et al.  OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION , 2015, 1508.02399.

[62]  C. Nixon,et al.  VARIABILITY IN TIDAL DISRUPTION EVENTS: GRAVITATIONALLY UNSTABLE STREAMS , 2015, 1506.08194.

[63]  M. Dall'Ora,et al.  ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. II. MID-INFRARED PERIOD–LUMINOSITY RELATIONS , 2015, 1505.07858.

[64]  Y. Levin,et al.  DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI , 2015, 1504.02787.

[65]  X. Cheng,et al.  MULTIWAVELENGTH OBSERVATIONS OF A PARTIALLY ERUPTIVE FILAMENT ON 2011 SEPTEMBER 8 , 2015, 1503.02933.

[66]  P. Laguna,et al.  ULTRA-CLOSE ENCOUNTERS OF STARS WITH MASSIVE BLACK HOLES: TIDAL DISRUPTION EVENTS WITH PROMPT HYPERACCRETION , 2015, 1502.05740.

[67]  S. Rosswog,et al.  Relativistic effects on tidal disruption kicks of solitary stars , 2015, 1502.02039.

[68]  Yang Chen,et al.  SUPERNOVA REMNANT KESTEVEN 27: INTERACTION WITH A NEIGHBOR Hi CLOUD VIEWED BY FERMI , 2014, 1408.2323.

[69]  R. Spurzem,et al.  SUPER MASSIVE BLACK HOLE IN GALACTIC NUCLEI WITH TIDAL DISRUPTION OF STARS , 2014, 1407.3537.

[70]  T. Bogdanović,et al.  Tidal disruption of a star in the Schwarzschild spacetime: Relativistic effects in the return rate of debris , 2014, 1407.3266.

[71]  Enrico Ramirez-Ruiz,et al.  ILLUMINATING MASSIVE BLACK HOLES WITH WHITE DWARFS: ORBITAL DYNAMICS AND HIGH-ENERGY TRANSIENTS FROM TIDAL INTERACTIONS , 2014, 1405.1426.

[72]  I. Georgiev,et al.  Nuclear star clusters in 228 spiral galaxies in the HST/WFPC2 archive: catalogue and comparison to other stellar systems , 2014, 1404.5956.

[73]  S. Komossa,et al.  A MILLIPARSEC SUPERMASSIVE BLACK HOLE BINARY CANDIDATE IN THE GALAXY SDSS J120136.02+300305.5 , 2014, 1404.4933.

[74]  P. Amaro-Seoane,et al.  DISRUPTION OF A RED GIANT STAR BY A SUPERMASSIVE BLACK HOLE AND THE CASE OF PS1-10jh , 2013, 1307.6176.

[75]  E. Rossi,et al.  THE VELOCITY DISTRIBUTION OF HYPERVELOCITY STARS , 2013, 1307.1134.

[76]  P. Jonker,et al.  THE X-RAY PROPERTIES OF THE BLACK HOLE TRANSIENT MAXI J1659–152 IN QUIESCENCE , 2013, 1308.2580.

[77]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[78]  J. Guillochon,et al.  SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI , 2013, 1307.2900.

[79]  J. Guillochon,et al.  TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS , 2013, 1305.4634.

[80]  P. Coppi,et al.  THE IMPACT OF BOUND STELLAR ORBITS AND GENERAL RELATIVITY ON THE TEMPORAL BEHAVIOR OF TIDAL DISRUPTION FLARES , 2013, 1303.4837.

[81]  H. Umeda,et al.  EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE , 2013, 1302.6402.

[82]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[83]  A. Loeb,et al.  Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits , 2012, 1210.1333.

[84]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[85]  S. Paul,et al.  A fine line. , 2013, Midwives.

[86]  M. Kesden Black-Hole Spin Dependence in the Light Curves of Tidal Disruption Events , 2012, 1207.6401.

[87]  J. Guillochon,et al.  THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION , 2012, 1206.2922.

[88]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[89]  C. Evans,et al.  Relativistic effects in the tidal interaction between a white dwarf and a massive black hole in Fermi normal coordinates , 2012, 1303.4129.

[90]  E. Rossi,et al.  HYPER VELOCITY STARS AND THE RESTRICTED PARABOLIC 3-BODY PROBLEM , 2012 .

[91]  E. Rossi,et al.  EJECTION AND CAPTURE DYNAMICS IN RESTRICTED THREE-BODY ENCOUNTERS , 2012, 1201.4794.

[92]  R. Haas,et al.  TIDAL DISRUPTIONS OF WHITE DWARFS FROM ULTRA-CLOSE ENCOUNTERS WITH INTERMEDIATE-MASS SPINNING BLACK HOLES , 2012, 1201.4389.

[93]  M. Kesden Tidal disruption rate of stars by spinning supermassive black holes , 2011, 1109.6329.

[94]  R. Blandford,et al.  Adiabatic evolution of mass-losing stars , 2011, 1110.2582.

[95]  R. Blandford,et al.  Roche Accretion of stars close to massive black holes , 2011, 1110.2614.

[96]  P. Amaro-Seoane,et al.  Tidal disruptions of separated binaries in galactic nuclei , 2011, 1106.1429.

[97]  Naoki Seto,et al.  Resonant trapping of stars by merging massive black hole binaries , 2011, 1105.1845.

[98]  Fukun Liu,et al.  TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES , 2010, 1012.4466.

[99]  Douglas N. C. Lin,et al.  CONSEQUENCES OF THE EJECTION AND DISRUPTION OF GIANT PLANETS , 2010, 1012.2382.

[100]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[101]  K. Menou,et al.  White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation , 2010, 1005.3987.

[102]  N. Seto,et al.  Relativistic astrophysics with resonant multiple inspirals , 2010, 1005.3114.

[103]  A. Loeb,et al.  Prompt Tidal Disruption of Stars as an Electromagnetic Signature of Supermassive Black Hole Coalescence , 2010, 1004.4833.

[104]  K. Olsen,et al.  THE NGC 404 NUCLEUS: STAR CLUSTER AND POSSIBLE INTERMEDIATE-MASS BLACK HOLE , 2010, 1003.0680.

[105]  D. Kasen,et al.  OPTICAL TRANSIENTS FROM THE UNBOUND DEBRIS OF TIDAL DISRUPTION , 2009, 0911.5358.

[106]  J. Luminet,et al.  Relativistic tidal compressions of a star by a massive black hole , 2009, 0910.5362.

[107]  E. Rossi,et al.  HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM , 2009, 0911.1136.

[108]  University of California at Santa Cruz,et al.  INTERRUPTION OF TIDAL-DISRUPTION FLARES BY SUPERMASSIVE BLACK HOLE BINARIES , 2009, 0910.4152.

[109]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[110]  E. Ramirez-Ruiz,et al.  TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES , 2008, 0808.2143.

[111]  J. Misic Close Binary Systems , 2009 .

[112]  D. Kasen,et al.  THREE-DIMENSIONAL SIMULATIONS OF TIDALLY DISRUPTED SOLAR-TYPE STARS AND THE OBSERVATIONAL SIGNATURES OF SHOCK BREAKOUT , 2008, 0811.1370.

[113]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[114]  A. Vecchio,et al.  Observing white dwarfs orbiting massive black holes in the gravitational wave and electro-magnetic window , 2008, 0806.0624.

[115]  M. Brassart,et al.  Shock waves in tidally compressed stars by massive black holes , 2007, 0707.2476.

[116]  A. Eckart,et al.  The structure of the nuclear stellar cluster of the Milky Way , 2006, Proceedings of the International Astronomical Union.

[117]  J. Makino,et al.  Tidal capture of stars by intermediate‐mass black holes , 2005, astro-ph/0511752.

[118]  M. Chernyakova,et al.  Relativistic cross sections of mass stripping and tidal disruption of a star by a super-massive rotating black hole , 2005, astro-ph/0509853.

[119]  M. Miller,et al.  Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events , 2005, astro-ph/0507133.

[120]  M. Shibata,et al.  Black hole tidal problem in the Fermi normal coordinates , 2005, gr-qc/0501084.

[121]  E. Sterl Phinney,et al.  Gravitational Waves and X-Ray Signals from Stellar Disruption by a Massive Black Hole , 2004, astro-ph/0404173.

[122]  T. Alexander,et al.  Squeezars: Tidally Powered Stars Orbiting a Massive Black Hole , 2003, astro-ph/0305061.

[123]  I. Novikov,et al.  The new model of a tidally disrupted star: further development and relativistic calculations , 2002, astro-ph/0205065.

[124]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[125]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[126]  I. Novikov,et al.  A New Model of a Tidally Disrupted Star , 2000, astro-ph/0005107.

[127]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[128]  K. Thorne Probing Black Holes and Relativistic Stars with Gravitational Waves , 1997, gr-qc/9706079.

[129]  P. Diener,et al.  Relativistic Tidal Interaction of Stars with a Rotating Black Hole , 1997 .

[130]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[131]  P. Podsiadlowski The response of tidally heated stars , 1996 .

[132]  A. Khokhlov,et al.  Powerful Ejection of Matter from Tidally Disrupted Stars near Massive Black Holes and a Possible Application to Sagittarius A East , 1996 .

[133]  A. Biviano,et al.  Velocity Dispersions and X-Ray Temperatures of Galaxy Clusters , 1995, astro-ph/9507031.

[134]  P. Diener,et al.  Non-linear effects at tidal capture of stars by a massive black hole – II. Compressible affine models and tidal interaction after capture , 1995 .

[135]  A. King,et al.  Black-hole stellar accretion in active galactic nuclei , 1994 .

[136]  C. Kochanek The Aftermath of tidal disruption: The Dynamics of thin gas streams , 1994 .

[137]  A. King,et al.  Stellar accretion in active galactic nuclei , 1993 .

[138]  A. Beloborodov,et al.  Angular momentum of a supermassive black hole in a dense star cluster , 1992 .

[139]  A. Kosovichev,et al.  Non-linear effects at tidal capture of stars by a massive black hole – I. Incompressible affine model , 1992 .

[140]  C. Pethick,et al.  Tidal capture of stars by a massive black hole , 1992 .

[141]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[142]  B. Pichon,et al.  Tidally-detonated nuclear reactions in main sequence stars passing near a large black hole , 1989 .

[143]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[144]  F. Michel,et al.  Neutron star disk formation from supernova fall-back and possible observational consequences , 1988, Nature.

[145]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[146]  M. S. Hjellming,et al.  Thresholds for rapid mass transfer in binary systems. I. Polytropic models , 1987 .

[147]  Jeremiah P. Ostriker,et al.  Cross sections for tidal capture binary formation and stellar merger , 1986 .

[148]  B. Carter,et al.  Dynamics of an Affine Star Model in a Black Hole Tidal Field , 1986 .

[149]  J. Luminet,et al.  Tidal squeezing of stars by Schwarzschild black holes , 1985 .

[150]  B. Carter,et al.  Mechanics of the affine star model , 1985 .

[151]  G. J. Savonije,et al.  Evolutionary status of bright, low-mass x-ray sources/sup 1/ , 1983 .

[152]  G. J. Savonije,et al.  Evolutionary status of bright, low-mass x-ray sources¹ , 1983 .

[153]  J. Luminet,et al.  Tidal compression of a star by a large black hole. I Mechanical evolution and nuclear energy release by proton capture , 1983 .

[154]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[155]  D. Whitmire,et al.  Conservative mass transfer in close binary systems. I. Equations of motion for spin and orbital angular momenta. , 1983 .

[156]  J. Marck Solution to the equations of parallel transport in Kerr geometry; tidal tensor , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[157]  R. Webbink,et al.  The evolution of highly compact binary stellar systems , 1982 .

[158]  B. Carter,et al.  Pancake detonation of stars by black holes in galactic nuclei , 1982, Nature.

[159]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[160]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[161]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[162]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[163]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[164]  Bohdan Paczynski,et al.  Evolutionary Processes in Close Binary Systems , 1971 .

[165]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.

[166]  E. J. Öpik,et al.  Close Binary Systems , 1959 .