Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter

[1]  T. Hasunuma,et al.  Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain , 2013, Applied Microbiology and Biotechnology.

[2]  T. Hasunuma,et al.  Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. , 2013, Journal of biotechnology.

[3]  Tomohisa Hasunuma,et al.  Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. , 2012, Biotechnology advances.

[4]  T. Hasunuma,et al.  Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. , 2012, Bioresource technology.

[5]  A. Kondo,et al.  Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression , 2011, Biotechnology for biofuels.

[6]  T. Hasunuma,et al.  Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae , 2011, Applied Microbiology and Biotechnology.

[7]  Yves F Dufrêne,et al.  Measuring cell wall thickness in living yeast cells using single molecular rulers. , 2010, ACS nano.

[8]  M. Ballesteros,et al.  Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. , 2010, Bioresource technology.

[9]  Venkatesh Balan,et al.  Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production , 2010, Biotechnology for biofuels.

[10]  Akihiko Kondo,et al.  Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains , 2010, Microbial cell factories.

[11]  T. Hasunuma,et al.  Ethanol production from cellulosic materials using cellulase-expressing yeast. , 2010, Biotechnology journal.

[12]  Michael E. Himmel,et al.  Perspectives and New Directions for the Production of Bioethanol Using Consolidated Bioprocessing of Lignocellulose , 2009 .

[13]  Wensheng Qin,et al.  Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives , 2009, International journal of biological sciences.

[14]  Bruce E Dale,et al.  'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies. , 2009, Current opinion in biotechnology.

[15]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[16]  H. Hoshida,et al.  Reliable fusion PCR mediated by GC-rich overlap sequences. , 2009, Gene.

[17]  K. Kuroda,et al.  Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase. , 2008, Journal of bioscience and bioengineering.

[18]  Robert L. Mach,et al.  Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) , 2008, Applied Microbiology and Biotechnology.

[19]  Carlos A Cardona,et al.  Fuel ethanol production: process design trends and integration opportunities. , 2007, Bioresource technology.

[20]  Ashok Pandey,et al.  Handbook of Plant Based Biofuels , 2007 .

[21]  A. Conzelmann,et al.  Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. , 2007, Biochimica et biophysica acta.

[22]  H. Takagi,et al.  Global Gene Expression Analysis of Yeast Cells during Sake Brewing , 2006, Applied and Environmental Microbiology.

[23]  M. Himmel,et al.  Outlook for cellulase improvement: screening and selection strategies. , 2006, Biotechnology advances.

[24]  Akihiko Kondo,et al.  Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain , 2006, Applied Microbiology and Biotechnology.

[25]  L. Lynd,et al.  Consolidated bioprocessing of cellulosic biomass: an update. , 2005, Current opinion in biotechnology.

[26]  L. Ten,et al.  Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. , 2004, Journal of microbiological methods.

[27]  M. Ueda,et al.  Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme , 2004, Applied and Environmental Microbiology.

[28]  M. Ueda,et al.  Yeast cell-surface display—applications of molecular display , 2004, Applied Microbiology and Biotechnology.

[29]  Akihiko Kondo,et al.  Preparation of yeast strains displaying IgG binding domain ZZ and enhanced green fluorescent protein for novel antigen detection systems. , 2003, Journal of bioscience and bioengineering.

[30]  M. Frieman,et al.  The ω‐site sequence of glycosylphosphatidylinositol‐anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall , 2003, Molecular microbiology.

[31]  M. Ueda,et al.  Direct and Efficient Production of Ethanol from Cellulosic Material with a Yeast Strain Displaying Cellulolytic Enzymes , 2002, Applied and Environmental Microbiology.

[32]  M. Ueda,et al.  High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase , 2002, Applied Microbiology and Biotechnology.

[33]  J. Visser,et al.  beta-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. , 2000, Journal of agricultural and food chemistry.

[34]  K. Hamada,et al.  Proteins Glycosylphosphatidylinositol-Attached of Yeast Region Participate in Cellular Localization-Minus ω Amino Acid Residues in the , 1999 .

[35]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[36]  H. Kitagaki,et al.  Sed1p Is a Major Cell Wall Protein ofSaccharomyces cerevisiae in the Stationary Phase and Is Involved in Lytic Enzyme Resistance , 1998, Journal of bacteriology.

[37]  K. Hamada,et al.  Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae , 1998, Molecular and General Genetics MGG.

[38]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[39]  H. Tettelin,et al.  In silicio identification of glycosyl‐phosphatidylinositol‐anchored plasma‐membrane and cell wall proteins of Saccharomyces cerevisiae , 1997, Yeast.

[40]  F. Klis,et al.  Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins , 1997, Journal of bacteriology.

[41]  F. Klis,et al.  Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins , 1997, Applied and environmental microbiology.

[42]  F. Klis,et al.  Immobilizing proteins on the surface of yeast cells. , 1996, Trends in biotechnology.

[43]  R. Schekman,et al.  GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. , 1996, The EMBO journal.

[44]  F. Klis,et al.  Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae , 1995, Journal of bacteriology.

[45]  M. E. Jones Analysis of algebraic weighted least-squares estimators for enzyme parameters. , 1992, The Biochemical journal.

[46]  G. Zeeman,et al.  Pretreatments to enhance the digestibility of lignocellulosic biomass. , 2009, Bioresource technology.

[47]  Lee R Lynd,et al.  Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. , 2007, Advances in biochemical engineering/biotechnology.

[48]  T. Kuo,et al.  One-step transformation of yeast in stationary phase , 2004, Current Genetics.

[49]  M. Ueda,et al.  Cell surface engineering of yeast: construction of arming yeast with biocatalyst. , 2000, Journal of bioscience and bioengineering.

[50]  Lisbeth Olsson,et al.  Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates , 1993 .