The dependence of reflectance spectra of Mercury on surface terrain

Abstract Reflectance spectra of Mercury, covering the spectral range of ∼0.3–1.1 μ m obtained during 1963–1976, were examined for any correlations with surface terrain. Mercury's 6.1385°/day rotational rate, the phases of the planet around maximum elongations, and bidirectional reflectance spectroscopy theory were used to identify the surface area associated with each spectrum. Data from 1974–1975, re-reduced with improved standard star flux ratios, show a weak absorption band in the near infrared not see in earlier analyses. Older spectra suggest that the western longitudes of the unimaged side of Mercury are similar to the rest of the planet. Spectra of the intercrater plains in the 0–90° quadrant suggest a possible absorption band. Spectra of areas dominated by Caloris Basin with the encompassing smooth plains may show Fe 2+ abundances in the soil comparable to lunar highlands soil. No striking differences between spectra of intercrater plains and spectra of smooth plains are found. The absorption features seen in spectra of Mercury are generally weaker than features seen in lunar spectra.