Implicit QR for rank-structured matrix pencils

A fast implicit QR algorithm for eigenvalue computation of low rank corrections of Hermitian matrices is adjusted to work with matrix pencils arising from zerofinding problems for polynomials expressed in Chebyshev-like bases. The modified QZ algorithm computes the generalized eigenvalues of certain $$N\times N$$N×N rank structured matrix pencils using $$O(N^2)$$O(N2) flops and $$O(N)$$O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.

[1]  Israel Gohberg,et al.  Separable Type Representations of Matrices and Fast Algorithms , 2013 .

[2]  Jianlin Xia,et al.  A Fast QR Algorithm for Companion Matrices , 2007 .

[3]  L. Gemignani Quasiseparable structures of companion pencils under the QZ-algorithm , 2005 .

[4]  Robert M. Corless,et al.  On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis , 2007 .

[5]  Gene H. Golub,et al.  Matrix shapes invariant under the symmetric QR algorithm , 1995, Numer. Linear Algebra Appl..

[6]  V. Frayssé,et al.  A note on the normwise perturbation theory for the regular generalized eigenproblem , 1998 .

[7]  Louis A. Romero,et al.  Roots of Polynomials Expressed in Terms of Orthogonal Polynomials , 2005, SIAM J. Numer. Anal..

[8]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[9]  de BoorCarl An empty exercise , 1990 .

[10]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[11]  Dario Bini,et al.  A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .

[12]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[13]  Miroslav Fiedler,et al.  Completing a Matrix When Certain Entries of Its Inverse Are Specified , 1986 .

[14]  John E. Boyd Computing real roots of a polynomial in Chebyshev series form through subdivision , 2006 .

[15]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[16]  Gene H. Golub,et al.  The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments , 2009 .

[17]  John P. Boyd Computing Zeros on a Real Interval through Chebyshev Expansion and Polynomial Rootfinding , 2002, SIAM J. Numer. Anal..

[18]  F. Tisseur Backward error and condition of polynomial eigenvalue problems , 2000 .

[19]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[20]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[21]  Vanni Noferini,et al.  The Ehrlich–Aberth method for palindromic matrix polynomials represented in the Dickson basis , 2013 .

[22]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[23]  Gene H. Golub,et al.  QR-Like Algorithms for Symmetric Arrow Matrices , 1992, SIAM J. Matrix Anal. Appl..

[24]  H. Dym,et al.  Operator theory: Advances and applications , 1991 .

[25]  Robert M. Corless,et al.  Geometric applications of the Bezout matrix in the Lagrange basis , 2007, SNC '07.

[26]  Carl de Boor An empty exercise , 1990 .

[27]  I. Gohberg,et al.  Implicit QR with Compression , 2012 .

[28]  Herbert E. Salzer,et al.  Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..