Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine

Rosalind J Wright | P. Klenerman | S. Rowland-Jones | M. Haniffa | G. Screaton | A. Mentzer | S. Travis | E. Barnes | E. Stephenson | S. Faustini | A. Pollard | D. Eyre | M. Ansari | S. Tucker | M. Knight | T. D. de Silva | A. Angyal | Rebecca Brown | N. Provine | A. Amini | K. Jeffery | C. D. de Lara | P. Matthews | W. Dejnirattisai | P. Supasa | L. Turtle | C. Dold | S. Dunachie | J. Frater | P. Goulder | C. Conlon | J. Mongkolsapaya | T. Drake | Susan Hopkins | R. Payne | Aline Linder | D. Skelly | C. Arancibia-Cárcamo | A. Lawrie | A. Richter | Adam W Watson | Maeva Dupont | S. Al-Taei | A. Fairman | J. Chalk | Jennifer C. Holmes | N. Ramamurthy | M. Pace | D. Wootton | Síle A. Johnson | S. Foulkes | S. Hambleton | Mohammad Ali | T. Donnison | A. Ogbe | Helen L. Brown | P. Rongkard | E. Adland | B. Payne | Sinéad Kelly | R. Whitham | Lisa Watson | J. Austin | M. Chand | L. Lee | A. Shields | S. Longet | J. Spegarova | Carl-Philipp Hackstein | N. Gillson | V. Hall | A. Deeks | A. Cross | G. Platt | Lucy Denly | Syed Adlou | Mwila Kasanyinga | Lizzie Stafford | S. Adele | S. Moore | Lauren Lett | A. Saei | James E. D. Thaventhiran | S. Dobson | T. Tipton | H. Mehta | D. O’Donnell | Hibatullah Abuelgasim | T. Altmann | A. Chawla | Siobhan Gardiner | Anni Jämsén | Eloise Phillips | N. Meardon | Ahmed Alhussni | A. Zawia | H. Turton | Oliver Sampson | Alice Bridges-Webb | Huiyuan Xiao | L. Hering | A. Nicols | J. Tyerman | H. Hornsby | E. Horner | T. Malone | Senthil K Chinnakannan | Kate Lillie | Stavros Dimitriadis | C. Duncan | H. D. Akther | Alec C. Hargreaves | G. Sandhar | Jonathan A. Kilby | M. Carroll | Esme Weeks | J. Haworth | L. Romaniuk | Robert Wilson | Martin Bayley | R. Kirk | S. Wood | Ben Diffey | C. Jones | Sonia Poolan | Nicholas Lim | Nicholas G Robinson | Beatrice Simmons | A. Brown | Sarah R. Thomas | H. Brown | L. S. Reyes | Hibatullah Emily Syed Hossain Delowar Ahmed Mohammad M. Azim Abuelgasim Adland Adlou Akther Alhussn | Jospeh Cutteridge | Javier Gilbert-Jarmillo | K. Subramaniam | Ali Amini | Maeva DuPont | Michael L. Knight | Senthil Chinnakannan | S. Hopkins | Jem Chalk | Sarah Thomas | Emily Stephenson | Brendan A. I. Payne | Hema Mehta | Chris Jones | Sarah R. Thomas | S. Gardiner

[1]  A. Karlsson,et al.  Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue , 2021, Science Immunology.

[2]  P. Klenerman,et al.  Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern , 2021, Nature Communications.

[3]  P. Moss,et al.  Higher serological responses and increased vaccine effectiveness demonstrate the value of extended vaccine schedules in combatting COVID-19 in England , 2021, medRxiv.

[4]  R. Bruton,et al.  Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people , 2021, Immunity & ageing : I & A.

[5]  M. Diamond,et al.  SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses , 2021, Nature.

[6]  J. Vekemans,et al.  Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection , 2021, Nature Medicine.

[7]  S. Madhi,et al.  Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum , 2021, Cell.

[8]  P. Klenerman,et al.  Divergent trajectories of antiviral memory after SARS-CoV-2 infection , 2021, Nature Communications.

[9]  H. Schuitemaker,et al.  Neutralizing antibodies elicited by the Ad26.COV2.S COVID-19 vaccine show reduced activity against 501Y.V2 (B.1.351), despite protection against severe disease by this variant , 2021, bioRxiv.

[10]  Scott L. Bain,et al.  COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study , 2021, The Lancet.

[11]  Aaron M. Rosenfeld,et al.  Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination , 2021, Science Immunology.

[12]  J. V. Van Eyk,et al.  Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2 , 2021, Nature Medicine.

[13]  D. Stuart,et al.  Antibody evasion by the P.1 strain of SARS-CoV-2 , 2021, Cell.

[14]  P. Klenerman,et al.  T-Cell and Antibody Responses to First BNT162b2 Vaccine Dose in Previously SARS-CoV-2-Infected and Infection-Naive UK Healthcare Workers: A Multicentre, Prospective, Observational Cohort Study , 2021, SSRN Electronic Journal.

[15]  T. Pastinen,et al.  Antibody Responses after a Single Dose of SARS-CoV-2 mRNA Vaccine , 2021, The New England journal of medicine.

[16]  D. Diavatopoulos,et al.  Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection , 2021, Current opinion in infectious diseases.

[17]  A. Fiore-Gartland,et al.  Evidence for antibody as a protective correlate for COVID-19 vaccines , 2021, Vaccine.

[18]  M. Davenport,et al.  What level of neutralising antibody protects from COVID-19? . , 2021, medRxiv.

[19]  J. Moon,et al.  Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals , 2021, The Lancet.

[20]  D. Stuart,et al.  Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera , 2021, Cell.

[21]  D. Stuart,et al.  Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera , 2021, Cell.

[22]  D. Lauffenburger,et al.  Humoral signatures of protective and pathological SARS-CoV-2 infection in children , 2021, Nature Medicine.

[23]  Nguyen H. Tran,et al.  Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials , 2021, The Lancet.

[24]  Gavin J. D. Smith,et al.  Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients , 2021, Cell Reports.

[25]  Bjoern Peters,et al.  Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection , 2021, Science.

[26]  Nguyen H. Tran,et al.  Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses , 2020, Nature Medicine.

[27]  P. Dormitzer,et al.  Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine , 2020, The New England journal of medicine.

[28]  D. Lauffenburger,et al.  Correlates of Protection Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[29]  Bjoern Peters,et al.  Immunological memory to SARS-CoV-2 assessed for up to eight months after infection , 2020, bioRxiv.

[30]  A. Folgori,et al.  Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans , 2020, npj Vaccines.

[31]  P. Klenerman,et al.  T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses , 2020, Nature Communications.

[32]  J. Greenbaum,et al.  Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity , 2020, Cell.

[33]  A. Folgori,et al.  MHC class II invariant chain–adjuvanted viral vectored vaccines enhances T cell responses in humans , 2020, Science Translational Medicine.

[34]  Torsten Seemann,et al.  Isolation and rapid sharing of the 2019 novel coronavirus (SARS‐CoV‐2) from the first patient diagnosed with COVID‐19 in Australia , 2020, The Medical journal of Australia.

[35]  A. Lawrie,et al.  Safety and Immunogenicity of a Heterologous Prime-Boost Ebola Virus Vaccine Regimen in Healthy Adults in the United Kingdom and Senegal , 2018, The Journal of infectious diseases.

[36]  K. Tarte,et al.  IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression , 2017, Nature Communications.

[37]  A. Mentzer,et al.  Searching for the human genetic factors standing in the way of universally effective vaccines , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Mark M. Davis,et al.  A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory , 2014, Science Translational Medicine.

[39]  B. Jensen,et al.  Qualitative and Quantitative Analysis of Adenovirus Type 5 Vector-Induced Memory CD8 T Cells: Not as Bad as Their Reputation , 2013, Journal of Virology.

[40]  K. Tarte,et al.  IL-2 Requirement for Human Plasma Cell Generation: Coupling Differentiation and Proliferation by Enhancing MAPK–ERK Signaling , 2012, The Journal of Immunology.

[41]  R. Koup,et al.  Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. , 2003, Journal of immunological methods.

[42]  D. Stuart,et al.  Reduced Neutralization of SARS-CoV-2 B.1.1.7 Variant from Naturally Acquired and Vaccine Induced Antibody Immunity , 2021, Social Science Research Network.