Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor

[1]  Hua Li,et al.  Ionic Conductive Organohydrogels with Dynamic Pattern Behavior and Multi‐Environmental Stability , 2021, Advanced Functional Materials.

[2]  Jie Feng,et al.  Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate. , 2021, Carbohydrate polymers.

[3]  Shuang Wang,et al.  High-stable, outstanding heat resistance ionogel electrolyte and the poly(3,4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor , 2021 .

[4]  Zhaoling Li,et al.  Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing , 2021 .

[5]  Ligang Gai,et al.  Antifreezing Zwitterionic Hydrogel Electrolyte with High Conductivity of 12.6 mS cm−1 at −40 °C through Hydrated Lithium Ion Hopping Migration , 2021, Advanced Functional Materials.

[6]  Shaoyi Jiang,et al.  High-strength and fibrous capsule–resistant zwitterionic elastomers , 2021, Science Advances.

[7]  Qiang Zhao,et al.  Flexible Transparent Supercapacitors: Materials and Devices , 2020, Advanced Functional Materials.

[8]  A. Ragauskas,et al.  Deep Eutectic Solvents: A Review of Fundamentals and Applications. , 2020, Chemical reviews.

[9]  Huichao Liu,et al.  A one-step aqueous route to prepare polyacrylonitrile-based hydrogels with excellent ionic conductivity and extreme low temperature tolerance , 2020 .

[10]  F. Stadler,et al.  Fabrication of Highly Robust and Conductive Ion Gels Based on the Combined Strategies of Double-Network, Composite, and High-Functionality Cross-Linkers. , 2020, ACS applied materials & interfaces.

[11]  S. Ahadian,et al.  Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. , 2020, Lab on a chip.

[12]  Stephan Handschuh‐Wang,et al.  Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. , 2020, Materials horizons.

[13]  J. Mota‐Morales,et al.  Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent , 2020 .

[14]  M. Panzer,et al.  Zwitterionic Copolymer-Supported Ionogel Electrolytes Featuring a Sodium Salt/Ionic Liquid Solution , 2020 .

[15]  Hujun Xie,et al.  Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions , 2020 .

[16]  D. Mecerreyes,et al.  Emerging Ionic Soft Materials Based on Deep Eutectic Solvents. , 2020, The journal of physical chemistry. B.

[17]  Zhanhu Guo,et al.  Overview of Ionogels in Flexible Electronics , 2020, Chemical record.

[18]  Sheng-Sheng Yu,et al.  3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. , 2020, ACS applied materials & interfaces.

[19]  Tianqi Li,et al.  Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra‐Durable Ionic Skins , 2020, Advanced materials.

[20]  J. Ying,et al.  Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices , 2020 .

[21]  C. Guo,et al.  Highly Transparent and Flexible Iontronic Pressure Sensors Based on an Opaque to Transparent Transition , 2020, Advanced science.

[22]  Yifan Guo,et al.  Mechanically and Electronically Robust Transparent Organohydrogel Fibers , 2020, Advanced materials.

[23]  H. Liimatainen,et al.  A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors , 2020, Journal of Materials Chemistry C.

[24]  Pooi See Lee,et al.  Water‐Processable, Stretchable, Self‐Healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors , 2019, Advanced materials.

[25]  Weizhong Yuan,et al.  Highly Stretchable, Adhesive and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. , 2019, ACS applied materials & interfaces.

[26]  Daniel R. King,et al.  Macroscale Double Networks: Design Criteria for Optimizing Strength and Toughness. , 2019, ACS applied materials & interfaces.

[27]  Lijie Sun,et al.  Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range , 2019, Nano Energy.

[28]  Yuhan Li,et al.  Highly Stretchable Organogel Ionic Conductors with Extreme-Temperature Tolerance , 2019, Chemistry of Materials.

[29]  M. Panzer,et al.  Design of Stretchable and Self-Healing Gel Electrolytes via Fully Zwitterionic Polymer Networks in Solvate Ionic Liquids for Li-Based Batteries , 2019, Chemistry of Materials.

[30]  Lewis D. Blackman,et al.  An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. , 2019, Chemical Society reviews.

[31]  Kamal Youcef-Toumi,et al.  Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes , 2018, Advanced materials.

[32]  Zhouyue Lei,et al.  Zwitterionic Skins with a Wide Scope of Customizable Functionalities. , 2018, ACS nano.

[33]  X. Loh,et al.  Supramolecular hydrogels for antimicrobial therapy. , 2018, Chemical Society reviews.

[34]  M. Panzer,et al.  Decoupling the Ionic Conductivity and Elastic Modulus of Gel Electrolytes: Fully Zwitterionic Copolymer Scaffolds in Lithium Salt/Ionic Liquid Solutions , 2018, Advanced Energy Materials.

[35]  Pooi See Lee,et al.  Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices , 2017 .

[36]  Jeong-Yun Sun,et al.  Highly stretchable, transparent ionic touch panel , 2016, Science.

[37]  Emma L. Smith,et al.  Deep eutectic solvents (DESs) and their applications. , 2014, Chemical reviews.

[38]  Shaoyi Jiang,et al.  Integrated antimicrobial and nonfouling zwitterionic polymers. , 2014, Angewandte Chemie.

[39]  François Jérôme,et al.  Deep eutectic solvents: syntheses, properties and applications. , 2012, Chemical Society reviews.

[40]  Lirong Wang,et al.  Multifunctional conductive hydrogel-based flexible wearable sensors , 2021 .

[41]  Ting Lu,et al.  A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor , 2020 .

[42]  Wei Zhang,et al.  Electrically conductive hydrogels for flexible energy storage systems , 2019, Progress in Polymer Science.

[43]  D. Macfarlane,et al.  The zwitterion effect in high-conductivity polyelectrolyte materials , 2004, Nature materials.

[44]  David L Davies,et al.  Novel solvent properties of choline chloride/urea mixtures. , 2003, Chemical communications.