Existence of multi-bump solutions for a class of Kirchhoff type problems in R3

Using variational methods, we establish existence of multi-bump solutions for a class of Kirchhoff type problems −(a+b∫R3|∇u|2dx)Δu+λV(x)u=f(u), where f is a continuous function with subcritical growth, V(x) is a critical frequency in the sense that infx∈R3V(x)=0. We show that if the zero set of V(x) has several isolated connected components Ω1, …, Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ > 0 large there exists, for any non-empty subset J ⊂ {1, …, k}, a bump solution is trapped in a neighborhood of ∪j ∈ JΩj.

[1]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[2]  Yueh-Cheng Kuo,et al.  The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions , 2011 .

[3]  Francisco Júlio S. A. Corrêa,et al.  On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition , 2009, Math. Comput. Model..

[4]  Xiaoming He,et al.  Infinitely many positive solutions for Kirchhoff-type problems , 2009 .

[5]  F. Wang On an electromagnetic Schrödinger equation with critical growth , 2008 .

[6]  Juncheng Wei,et al.  Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials , 2007 .

[7]  F. Lin,et al.  Solutions of perturbed Schrödinger equations with critical nonlinearity , 2007 .

[8]  Giovany M. Figueiredo,et al.  On an elliptic equation of p-Kirchhoff type via variational methods , 2006, Bulletin of the Australian Mathematical Society.

[9]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[10]  S. Secchi,et al.  Semiclassical states for NLS equations with magnetic potentials having polynomial growths , 2005 .

[11]  D. Cao,et al.  Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations , 2004 .

[12]  Yanheng Ding,et al.  Multiplicity of positive solutions of a nonlinear Schrödinger equation , 2003 .

[13]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[14]  Zhi-Qiang Wang,et al.  Standing Waves with a Critical Frequency for Nonlinear Schrödinger Equations , 2002 .

[15]  A. Ambrosetti,et al.  Multiplicity Results for some Nonlinear¶Schrödinger Equations with Potentials , 2001 .

[16]  M. Pino,et al.  Multi-peak bound states for nonlinear Schrödinger equations , 1998 .

[17]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[18]  M. Pino,et al.  Semi-classical States for Nonlinear Schrödinger Equations , 1997 .

[19]  M. Pino,et al.  Local mountain passes for semilinear elliptic problems in unbounded domains , 1996 .

[20]  Y. Oh On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential , 1990 .

[21]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[22]  S. Cingolani,et al.  Multiple Positive Solutions to Nonlinear Schrödinger Equations with Competing Potential Functions , 2000 .

[23]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[24]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .