Melting of icosahedral gold nanoclusters from molecular dynamics simulations.

Molecular dynamics simulations show that gold clusters with about 600-3000 atoms crystallize into a Mackay icosahedron upon cooling from the liquid. A detailed surface analysis shows that the facets on the surface of the Mackay icosahedral gold clusters soften but do not premelt below the bulk melting temperature. This softening is found to be due to the increasing mobility of vertex and edge atoms with temperature, which leads to inter-layer and intra-layer diffusion, and a shrinkage of the average facet size, so that the average shape of the cluster is nearly spherical at melting.

[1]  Iijima,et al.  Structural instability of ultrafine particles of metals. , 1986, Physical review letters.

[2]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[3]  F. D. Tolla Interplay of melting, wetting, overheating and faceting on metal surfaces: theory and simulation , 1997 .

[4]  J. Doye,et al.  Structural consequences of the range of the interatomic potential A menagerie of clusters , 1997, cond-mat/9709201.

[5]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[6]  Kellogg,et al.  Energetics of Pt adsorption on Pt(111). , 1994, Physical review. B, Condensed matter.

[7]  K. Sugawara,et al.  Population statistics of gold nanoparticle morphologies: direct determination by HREM observations , 2003 .

[8]  Jiwen Zheng,et al.  Atomic Force Microscopy-Based Nanolithography on Silicon Using Colloidal Au Nanoparticles As a Nanooxidation Mask , 2000 .

[9]  A. Messiah Quantum Mechanics , 1961 .

[10]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[11]  N. Hwang,et al.  Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. , 2002, Physical Review Letters.

[12]  Itamar Willner,et al.  "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle , 2003, Science.

[13]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[14]  B. Legrand,et al.  New magic numbers in metallic clusters: an unexpected metal dependence , 1997 .

[15]  J. Jellinek,et al.  Melting of Nickel Clusters , 1991 .

[16]  Catherine J. Murphy,et al.  Sensing strategy for lithium ion based on gold nanoparticles , 2002 .

[17]  Lewis,et al.  Energetics of diffusion on the (100) and (111) surfaces of Ag, Au, and Ir from first principles. , 1995, Physical review. B, Condensed matter.

[18]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[19]  C. Jayaprakash,et al.  Roughening and facet formation in crystals , 1983 .

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  Carnevali,et al.  Melting and nonmelting behavior of the Au(111) surface. , 1987, Physical review. B, Condensed matter.

[22]  L. Bartell,et al.  Melting and Freezing of Gold Nanoclusters , 2001 .

[23]  J. Doye,et al.  Surface-reconstructed icosahedral structures for lead clusters , 2002, cond-mat/0207566.

[24]  J. Murrell,et al.  Potential energy functions for atomic solids , 1990 .

[25]  Michele Parrinello,et al.  Simulation of gold in the glue model , 1988 .

[26]  K. D. Stock,et al.  Topography and surface melt on spherical gold crystals after purification by a pre-melt in air , 1980 .

[27]  L. Marks Experimental studies of small particle structures , 1994 .

[28]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[29]  K. Koga,et al.  Size- and temperature-dependent structural transitions in gold nanoparticles. , 2004, Physical review letters.

[30]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[31]  Christoph Dellago,et al.  Structural and Morphological Transitions in Gold Nanorods: A Computer Simulation Study , 2003 .

[32]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[33]  W. Selke,et al.  Monte Carlo and molecular dynamics of condensed matter systems , 1997 .

[34]  U. Landman,et al.  Melting of gold clusters , 1999 .

[35]  Boyer Ll,et al.  Statics and dynamics of icosahedrally twinned and single-crystal fcc clusters. , 1990 .

[36]  L. Marks Surface structure and energetics of multiply twinned particles , 1984 .

[37]  Shozo Ino,et al.  Stability of Multiply Twinned Particles , 1969 .

[38]  Karo Michaelian,et al.  Structure and energetics of Ni, Ag, and Au nanoclusters , 1999 .

[39]  C. Dellago,et al.  Melting and equilibrium shape of icosahedral gold nanoparticles , 2003, cond-mat/0312201.

[40]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[41]  Peter W. Stephens,et al.  Structural evolution of larger gold clusters , 1997 .

[42]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[43]  M. José-Yacamán,et al.  Structure determination of small particles by HREM imaging: Theory and experiment , 1998 .

[44]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[45]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[46]  Huang,et al.  Structure and phases of the Au(001) surface: Absolute x-ray reflectivity. , 1991, Physical review. B, Condensed matter.

[47]  T. P. Martin Shells of atoms , 1996 .

[48]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[49]  Canada.,et al.  Melting, freezing, and coalescence of gold nanoclusters , 1997, cond-mat/9703153.