Optimal Stopping of the Maximum Process

We consider a class of optimal stopping problems involving both the running maximum as well as the prevailing state of a linear diffusion. Instead of tackling the problem directly via the standard free boundary approach, we take an alternative route and present a parameterized family of standard stopping problems of the underlying diffusion. We apply this family to delineate circumstances under which the original problem admits a unique, well-defined solution. We then develop a discretized approach resulting in a numerical algorithm for solving the considered class of stopping problems. We illustrate the use of the algorithm in both a geometric Brownian motion and a mean reverting diffusion setting.

[1]  Альберт Николаевич Ширяев,et al.  О вероятностных характеристиках величин “падения” в стандартном броуновском движении@@@On probability characteristics of “downfalls” in a standard Brownian motion , 1999 .

[2]  A. Conze,et al.  Path Dependent Options: The Case of Lookback Options , 1991 .

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  Mikhail Urusov,et al.  Optimal stopping via measure transformation: the Beibel–Lerche approach , 2007 .

[5]  Pekka Matomaki Optimal stopping and control near boundaries , 2013, 1308.2478.

[6]  G. Peskir,et al.  Three-Dimensional Brownian Motion and the Golden Ratio Rule , 2013, 1303.2891.

[7]  Min Dai,et al.  Convergence of Binomial Tree Method for European/American Path-Dependent Options , 2004, SIAM J. Numer. Anal..

[8]  Larry A Shepp,et al.  The Russian Option: Reduced Regret , 1993 .

[9]  A Capped Optimal Stopping Problem for the Maximum Process , 2012, 1204.3119.

[10]  H. R. Lerche,et al.  A New Look at Optimal Stopping Problems related to Mathematical Finance , 1997 .

[11]  Noelle Foreshaw Options… , 2010 .

[12]  P. Salminen,et al.  Optimal stopping of strong Markov processes , 2012, 1203.4726.

[13]  G. Peskir Optimal Stopping of the Maximum Process : The Maximality Principle G , 2011 .

[14]  Y. Abu-Mostafa,et al.  On the maximum drawdown of a Brownian motion , 2004, Journal of Applied Probability.

[15]  H. Föllmer,et al.  POTENTIALS OF A MARKOV PROCESS ARE EXPECTED SUPREMA , 2007 .

[16]  S. H. Babbs Binomial valuation of lookback options , 2000 .

[17]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[18]  Luis H. R. Alvarez,et al.  On the properties of $r$-excessive mappings for a class of diffusions , 2003 .

[19]  Martin Beibel,et al.  A note on optimal stopping of regular diffusions under random discounting@@@A note on optimal stopping of regular diffusions under random discounting , 2000 .

[20]  Optimal stopping of the maximum process: a converse to the results of Peskir , 2007 .

[21]  Luis H. R. Alvarez,et al.  On the Optimal Stochastic Impulse Control of Linear Diffusions , 2008, SIAM J. Control. Optim..

[22]  Marc Yor,et al.  On Probability Characteristics of "Downfalls" in a Standard Brownian Motion , 2000 .

[23]  Optimal Stopping and Maximal Inequalities for Linear Diffusions , 1998 .

[24]  C. Ott,et al.  Optimal Stopping Problems for the Maximum Process , 2013 .

[25]  J. L. Pedersen,et al.  Discounted optimal stopping problems for the maximum process , 2000, Journal of Applied Probability.

[26]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[27]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[28]  J. Obłój The Maximality Principle Revisited: On Certain Optimal Stopping Problems , 2004, math/0405252.