Euclid preparation

The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).

R. Nichol | J. Brinchmann | L. Guzzo | H. Hoekstra | T. Kitching | Y. Mellier | F. Pasian | W. Percival | J. Rhodes | L. Valenziano | R. Bender | F. Castander | A. Cimatti | H. Kurki-Suonio | P. Lilje | G. Meylan | F. Grupp | R. Massey | S. Paltani | S. Pires | P. Fosalba | M. Kunz | L. Moscardini | L. Corcione | K. Jahnke | S. Ligori | M. Frailis | M. Poncet | A. Taylor | A. Zacchei | R. Kohley | S. Bardelli | A. Biviano | E. Branchini | C. Carbone | V. Cardone | P. Franzetti | C. Giocoli | E. Majerotto | F. Marulli | V. Pettorino | L. Pozzetti | E. Rossetti | P. Schneider | J. Zoubian | E. Zucca | M. Viel | S. Andreon | J. Carretero | R. Saglia | J. Coupon | M. Brescia | S. Cavuoti | B. Gillis | S. Clesse | Y. Copin | H. Aussel | F. Sureau | G. Congedo | H. Courtois | M. Kilbinger | E. Linder | C. Padilla | A. Secroun | F. Hormuth | C. Burigana | X. Dupac | E. Franceschi | S. Galeotta | E. Keihanen | D. Maino | G. Polenta | A. Renzi | J. Starck | D. Tavagnacco | J. Metge | Y. Wang | A. Cappi | M. Fumana | M. Martinelli | C. Conselice | M. Baldi | A. Blanchard | S. Camera | D. Sapone | S. Niemi | W. Gillard | R. Toledo-Moreo | T. Vassallo | S. Fotopoulou | A. Pourtsidou | S. Dusini | L. Stanco | D. Di Ferdinando | E. Medinaceli | G. Sirri | M. Tenti | L. Conversi | I. Lloro | S. Brau-Nogué | E. Bozzo | R. Clédassou | N. Martinet | J. Graciá-Carpio | M. Castellano | C. Kirkpatrick | F. Lacasa | E. Munari | E. Romelli | A. Nucita | H. Israel | A. Boucaud | O. Marggraf | D. Bonino | V. Capobianco | F. Dubath | B. Kubik | F. Raison | M. Roncarelli | I. Tereno | S. Farrens | K. Markovič | C. Carvalho | S. Ilic | R. Cabanac | R. Casas | A. Balaguera-Antolínez | S. Casas | Z. Sakr | I. Tutusaus | S. Yahia-Cherif | V. Yankelevich | C. Colodro-Conde | F. Ducret | C. Duncan | N. Fourmanoit | B. Metcalf | V. Scottez | F. Torradeflot | G. Racca | M. Fabricius | M. Cropper | S. Mei | G. Fabbian | A. da Silva | S. de la Torre | A. Sánchez | S. Kermiche | E. Maiorano | P. Tallada-Crespí | G. V. Verdoes Kleijn | Michele Moresco | P. Gómez-Alvarez | R. Cledassou | P. Schneider

[1]  V. Springel,et al.  Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models , 2020, 2007.01885.

[2]  R. Laureijs,et al.  Euclid preparation , 2020, Astronomy & Astrophysics.

[3]  A. Connolly,et al.  Photometric Redshifts with the LSST. II. The Impact of Near-infrared and Near-ultraviolet Photometry , 2020, The Astronomical Journal.

[4]  D. Gerdes,et al.  The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  C. Heymans,et al.  Photometric redshift calibration with self-organising maps , 2019, Astronomy & Astrophysics.

[6]  H. Hoekstra,et al.  KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear , 2019, Astronomy & Astrophysics.

[7]  J. Weller,et al.  Monte Carlo control loops for cosmic shear cosmology with DES Year 1 data , 2019, Physical Review D.

[8]  S. Paltani,et al.  horizon-AGN virtual observatory – 2. Template-free estimates of galaxy properties from colours , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  Judith G. Cohen,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.

[10]  O. Ilbert,et al.  Horizon-AGN virtual observatory – 1. SED-fitting performance and forecasts for future imaging surveys , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  Edinburgh,et al.  The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees , 2019, Astronomy & Astrophysics.

[12]  M. Irwin,et al.  KiDS+VIKING-450: A new combined optical and near-infrared dataset for cosmology and astrophysics , 2018, Astronomy & Astrophysics.

[13]  P. Schneider,et al.  KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data , 2018, Astronomy & Astrophysics.

[14]  Olivier Ilbert,et al.  The FMOS-COSMOS Survey of Star-forming Galaxies at z ∼ 1.6. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies , 2018, The Astrophysical Journal Supplement Series.

[15]  R. Nichol,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[16]  T. Nanayakkara,et al.  The MUSE-Wide Survey: survey description and first data release , 2018, Astronomy & Astrophysics.

[17]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[18]  S. Paltani,et al.  CPz: Classification-aided photometric-redshift estimation , 2018, Astronomy & Astrophysics.

[19]  O. Ilbert,et al.  The many flavours of photometric redshifts , 2018, Nature Astronomy.

[20]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[21]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[22]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[23]  S. Derriere,et al.  T-PHOT version 2.0: improved algorithms for background subtraction, local convolution, kernel registration, and new options , 2016, 1609.00146.

[24]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[25]  S. Kaviraj,et al.  The Horizon-AGN simulation: evolution of galaxy properties over cosmic time , 2016, 1605.09379.

[26]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[27]  M. Franx,et al.  THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr , 2016, 1603.05479.

[28]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[29]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[30]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[31]  J. Cardoso,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[32]  F. J. Castander,et al.  The MICE Grand Challenge Lightcone Simulation I: Dark matter clustering , 2013, 1312.1707.

[33]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[34]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[35]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[36]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[37]  J. Trump,et al.  DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES , 2011, 1108.6061.

[38]  R. Teyssier,et al.  Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations , 2011, Monthly Notices of the Royal Astronomical Society.

[39]  Simon J. Lilly,et al.  Photo‐z performance for precision cosmology , 2009, 0910.5735.

[40]  G. Rossi,et al.  Convolution- and deconvolution-based estimates of galaxy scaling relations from photometric redshift surveys , 2009, 0910.1214.

[41]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[42]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[43]  K. Benabed,et al.  ASKI: full-sky lensing map-making algorithms , 2009, 0901.2001.

[44]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[45]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[46]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[47]  Casey Papovich,et al.  TFIT: A Photometry Package Using Prior Information for Mixed‐Resolution Data Sets , 2007 .

[48]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[49]  A. Amara,et al.  Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry , 2007, 0705.1437.

[50]  R. Sheth On estimating redshift and luminosity distributions in photometric redshift surveys , 2007, astro-ph/0703537.

[51]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[52]  A. Fontana,et al.  ConvPhot: A profile-matching algorithm for precision photometry , 2007, astro-ph/0701232.

[53]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[54]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[55]  D. Huterer,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005, astro-ph/0506614.

[56]  B. Garilli,et al.  The VIMOS VLT deep survey - First epoch VVDS-deep survey: 11 564 spectra with 17.5 $\leq$ I$_\textit{\textbf{\small AB}}$ $\leq$ 24, and the redshift distribution over 0 $\leq$ z $\leq$ 5 , 2004, astro-ph/0409133.

[57]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[58]  S. Colombi,et al.  The origin and implications of dark matter anisotropic cosmic infall on ~L * haloes , 2004, astro-ph/0402405.

[59]  S. J. Lilly,et al.  The Canada-France Deep Fields Survey. III. Photometric Redshift Distribution to IAB = 24 , 2003, astro-ph/0310038.

[60]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[61]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[62]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[63]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[64]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[65]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[66]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[67]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[68]  P. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1997, astro-ph/9708069.

[69]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[70]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[71]  A. Ealet,et al.  The 0 . 1 < z < 1 . 65 evolution of the bright end of the [ O ] luminosity function ? , ? ? , 2015 .

[72]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[73]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[74]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .