Sensitivity of functional connectivity to periaqueductal gray localization, with implications for identifying disease-related changes in chronic visceral pain: A MAPP Research Network neuroimaging study

Highlights • Comparison of PAG localization techniques on connectivity measures from rs-fMRI.• Measures of whole-brain connectivity depend on PAG localization technique.• Detection of potential disease-related differences depend on localization technique.

[1]  Sean Mackey,et al.  The MAPP research network: design, patient characterization and operations , 2014, BMC Urology.

[2]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[3]  Gian Domenico Iannetti,et al.  Chapter 6 Brainstem functional imaging in humans , 2006 .

[4]  Randy L. Gollub,et al.  Sex similarities and differences in pain-related periaqueductal gray connectivity , 2012, PAIN.

[5]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[6]  Evelina Fedorenko,et al.  Subject-specific functional localizers increase . . . , 2012 .

[7]  V. Pavlov,et al.  Controlling inflammation: the cholinergic anti-inflammatory pathway. , 2006, Biochemical Society transactions.

[8]  J. Oliveras,et al.  Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat , 1974, Experimental Brain Research.

[9]  Mary Ann Ranagnano The Midbrain Periaqueductal Gray Matter: Functional, Anatomical, and Neurochemical Organization , 1993 .

[10]  K. Davis,et al.  Intrinsic functional connectivity of periaqueductal gray subregions in humans , 2016, Human brain mapping.

[11]  M. Pontari,et al.  Painful Bladder Filling and Painful Urgency are Distinct Characteristics in Men and Women with Urological Chronic Pelvic Pain Syndromes: A MAPP Research Network Study. , 2015, The Journal of urology.

[12]  Jonathan R. Polimeni,et al.  Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI , 2017, NeuroImage.

[13]  Randy L. Gollub,et al.  Exploring the brain in pain: Activations, deactivations and their relation , 2010, PAIN.

[14]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[15]  K. Davis,et al.  Lower Functional Connectivity of the Periaqueductal Gray Is Related to Negative Affect and Clinical Manifestations of Fibromyalgia , 2017, Front. Neuroanat..

[16]  Mert R. Sabuncu,et al.  The influence of head motion on intrinsic functional connectivity MRI , 2012, NeuroImage.

[17]  Thomas H. B. FitzGerald,et al.  Characterizing Aging in the Human Brainstem Using Quantitative Multimodal MRI Analysis , 2013, Front. Hum. Neurosci..

[18]  R. Bandler,et al.  Emerging Principles of Organization of the Midbrain Periaqueductal Gray Matter , 1991 .

[19]  J. Stamford Descending control of pain. , 1995, British journal of anaesthesia.

[20]  Olivia K. Faull,et al.  Physiological Noise in Brainstem fMRI , 2013, Front. Hum. Neurosci..

[21]  Tobias Schmidt-Wilcke,et al.  Changes in regional gray matter volume in women with chronic pelvic pain: A voxel-based morphometry study , 2012, PAIN®.

[22]  Jen-Chuen Hsieh,et al.  Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea , 2016, Pain.

[23]  Richard E. Harris,et al.  Brain signature and functional impact of centralized pain: a multidisciplinary approach to the study of chronic pelvic pain (MAPP) network study , 2017, Pain.

[24]  Andrew T. Drysdale,et al.  Resting-state connectivity biomarkers define neurophysiological subtypes of depression , 2016, Nature Medicine.

[25]  J. Zubieta,et al.  Placebo effects on human μ-opioid activity during pain , 2007, Proceedings of the National Academy of Sciences.

[26]  Brendon M. Nacewicz,et al.  Intrinsic functional connectivity of the central extended amygdala , 2017, bioRxiv.

[27]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[28]  R. Lanius,et al.  fMRI functional connectivity of the periaqueductal gray in PTSD and its dissociative subtype , 2016, Brain and behavior.

[29]  A. Babalian,et al.  The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter , 2018, Brain Structure and Function.

[30]  W. C. Groat,et al.  The neural control of micturition , 2008, Nature Reviews Neuroscience.

[31]  Hans Knutsson,et al.  Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates , 2016, Proceedings of the National Academy of Sciences.

[32]  Brandon Galarita,et al.  Chronic , 2020, Definitions.

[33]  Simon B Eickhoff,et al.  Imaging-based parcellations of the human brain , 2018, Nature Reviews Neuroscience.

[34]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[35]  Anjali Krishnan,et al.  Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations , 2014, NeuroImage.

[36]  Sergio Cerutti,et al.  Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  N. Kleinhans,et al.  Alterations in Connectivity on Functional Magnetic Resonance Imaging with Provocation of Lower Urinary Tract Symptoms: A MAPP Research Network Feasibility Study of Urological Chronic Pelvic Pain Syndromes. , 2016, Journal of Urology.

[38]  Jian Kong,et al.  Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study , 2010, Behavioural Brain Research.

[39]  Alex Martin,et al.  Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism , 2015, Proceedings of the National Academy of Sciences.

[40]  Tipu Z. Aziz,et al.  Deep brain stimulation for pain relief: A meta-analysis , 2005, Journal of Clinical Neuroscience.

[41]  Mark A. Elliott,et al.  Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth , 2012, NeuroImage.

[42]  Mengqi Liu,et al.  Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine , 2017, The Journal of Headache and Pain.

[43]  C. Tatsuoka,et al.  Autonomic neurophysiologic implications of disorders comorbid with bladder pain syndrome vs myofascial pelvic pain , 2019, Neurourology and urodynamics.

[44]  Andreas C. Themistocleous,et al.  A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy , 2018, Brain : a journal of neurology.

[45]  Eduardo E. Benarroch,et al.  Periaqueductal gray , 2012, Neurology.

[46]  J. Thayer,et al.  Effects of Chronic Pelvic Pain on Heart Rate Variability in Women. , 2015, The Journal of urology.

[47]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[48]  Dedra Buchwald,et al.  The MAPP research network: a novel study of urologic chronic pelvic pain syndromes , 2014, BMC Urology.

[49]  Ravi S. Menon,et al.  Imaging Attentional Modulation of Pain in the Periaqueductal Gray in Humans , 2002, The Journal of Neuroscience.

[50]  G. Holstege,et al.  A PET study on brain control of micturition in humans. , 1997, Brain : a journal of neurology.

[51]  Emeran A. Mayer,et al.  Preliminary structural MRI based brain classification of chronic pelvic pain: A MAPP network study , 2014, PAIN®.

[52]  Chelsea M. Kaplan,et al.  A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis , 2018, Nature Communications.

[53]  Kevin A. Johnson,et al.  Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network , 2016, NeuroImage: Clinical.

[54]  V. Napadow,et al.  Disrupted functional connectivity of the periaqueductal gray in chronic low back pain , 2014, NeuroImage: Clinical.

[55]  J. Price,et al.  Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys , 1998, The Journal of comparative neurology.

[56]  L. Jäncke,et al.  Differential magnitude coding of gains and omitted rewards in the ventral striatum , 2011, Brain Research.

[57]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[58]  J. Fuster,et al.  From perception to action: temporal integrative functions of prefrontal and parietal neurons. , 1999, Cerebral cortex.

[59]  Julien Cohen-Adad,et al.  Identification of discrete functional subregions of the human periaqueductal gray , 2013, Proceedings of the National Academy of Sciences.

[60]  Richard Apps,et al.  Top down control of spinal sensorimotor circuits essential for survival , 2017, The Journal of physiology.

[61]  Richard E. Harris,et al.  Resting Functional Connectivity of the Periaqueductal Gray Is Associated With Normal Inhibition and Pathological Facilitation in Conditioned Pain Modulation. , 2018, The journal of pain : official journal of the American Pain Society.

[62]  C. Büchel,et al.  Activation of the Opioidergic Descending Pain Control System Underlies Placebo Analgesia , 2009, Neuron.

[63]  Anthony E Pickering,et al.  Resolving the Brainstem Contributions to Attentional Analgesia , 2017, The Journal of Neuroscience.

[64]  Clement Hamani,et al.  The Subcallosal Cingulate Gyrus in the Context of Major Depression , 2011, Biological Psychiatry.

[65]  J. Prickaerts,et al.  The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer's disease. , 2008, Progress in brain research.

[66]  Julian F. Thayer,et al.  Chronic Pain and Heart Rate Variability in a Cross-Sectional Occupational Sample: Evidence for Impaired Vagal Control , 2016, The Clinical journal of pain.

[67]  T. Duong,et al.  Activation of neural pathways associated with sexual arousal in non‐human primates , 2004, Journal of magnetic resonance imaging : JMRI.

[68]  A. May Chronic pain may change the structure of the brain , 2008, PAIN®.

[69]  H. Akil,et al.  Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. , 1977, Journal of neurosurgery.

[70]  Ying Li,et al.  Altered periaqueductal gray resting state functional connectivity in migraine and the modulation effect of treatment , 2016, Scientific Reports.

[71]  K. Amunts,et al.  How to Characterize the Function of a Brain Region , 2018, Trends in Cognitive Sciences.

[72]  Jörn Diedrichsen,et al.  Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure , 2011, NeuroImage.

[73]  E. Mark Haacke,et al.  Internal Architecture of the Brain Stem with Key Axial Section , 2009 .

[74]  David Borsook,et al.  Neuroimaging of the periaqueductal gray: State of the field , 2012, NeuroImage.

[75]  Richard Apps,et al.  The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis , 2015, The Journal of Neuroscience.

[76]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[77]  Russell A. Poldrack,et al.  Handbook of Functional MRI Data Analysis: Visualizing, localizing, and reporting fMRI data , 2011 .

[78]  Hans-Jochen Heinze,et al.  Association between heart rate variability and fluctuations in resting-state functional connectivity , 2013, NeuroImage.

[79]  V. Calhoun,et al.  Disrupted intrinsic connectivity of the periaqueductal gray in patients with functional dyspepsia: A resting‐state fMRI study , 2017, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[80]  D. Hassabis,et al.  When Fear Is Near: Threat Imminence Elicits Prefrontal-Periaqueductal Gray Shifts in Humans , 2007, Science.

[81]  J. Hornung,et al.  The human raphe nuclei and the serotonergic system , 2003, Journal of Chemical Neuroanatomy.

[82]  Ludovica Griffanti,et al.  Hand classification of fMRI ICA noise components , 2017, NeuroImage.

[83]  P. Jerabek,et al.  Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response , 2000, Biological Psychiatry.

[84]  Michele T. Diaz,et al.  Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies , 2012, Journal of magnetic resonance imaging : JMRI.

[85]  Shawn Mikula,et al.  Internet-enabled high-resolution brain mapping and virtual microscopy , 2007, NeuroImage.

[86]  V. Napadow,et al.  Correlating Acupuncture fMRI in the Human Brainstem with Heart Rate Variability , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[87]  K. Davis,et al.  Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks , 2013, Proceedings of the National Academy of Sciences.

[88]  Thomas T. Liu,et al.  The global signal in fMRI: Nuisance or Information? , 2017, NeuroImage.

[89]  Karl J. Friston,et al.  Degeneracy and cognitive anatomy , 2002, Trends in Cognitive Sciences.

[90]  Jason J. Kutch,et al.  Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP , 2015, NeuroImage: Clinical.

[91]  F. Beissner,et al.  Functional MRI of the Brainstem: Common Problems and their Solutions , 2015, Clinical Neuroradiology.

[92]  Jen-Chuen Hsieh,et al.  The OPRM1 A118G polymorphism modulates the descending pain modulatory system for individual pain experience in young women with primary dysmenorrhea , 2017, Scientific Reports.

[93]  N. McNaughton,et al.  Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review , 2019, Progress in Neurobiology.

[94]  S. M. Smith,et al.  Introduction to Resting State fMRI Functional Connectivity , 2017 .

[95]  Sergi G. Costafreda,et al.  Pooling fMRI Data: Meta-Analysis, Mega-Analysis and Multi-Center Studies , 2009, Front. Neuroinform..

[96]  M. Herrero,et al.  Cortically projecting cells in the periaqueductal gray matter of the rat. A retrograde fluorescent tracer study , 1991, Brain Research.

[97]  M. T. Shipley,et al.  Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? , 1994, Trends in Neurosciences.

[98]  Emeran A. Mayer,et al.  Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis , 2005, Pain.

[99]  Ludovico Minati,et al.  Test‐retest reliability of the default mode network in a multi‐centric fMRI study of healthy elderly: Effects of data‐driven physiological noise correction techniques , 2016, Human brain mapping.

[100]  H. Akil,et al.  Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. , 1977, Journal of neurosurgery.

[101]  Claus Svarer,et al.  Functional connectivity of the dorsal and median raphe nuclei at rest , 2015, NeuroImage.

[102]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[103]  J. Besson,et al.  Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. , 1973, Brain research.

[104]  Peter J. Koopmans,et al.  Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T , 2015, NeuroImage.

[105]  A. Beaudet,et al.  The serotonin neurons in nucleus raphe dorsalis of adult rat: A light and electron microscope radioautographic study , 1982, The Journal of comparative neurology.

[106]  Olivia K. Faull,et al.  Connectivity‐based segmentation of the periaqueductal gray matter in human with brainstem optimized diffusion MRI , 2015, Human brain mapping.

[107]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[108]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[109]  Thomas E. Nichols,et al.  Can parametric statistical methods be trusted for fMRI based group studies? , 2015, 1511.01863.

[110]  Hang Joon Jo,et al.  Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI , 2013, J. Appl. Math..

[111]  Kyungmo Park,et al.  Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. , 2010, Arthritis and rheumatism.

[112]  Dante R. Chialvo,et al.  Chronic pain patients are impaired on an emotional decision-making task , 2004, Pain.

[113]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.