Van der Waals negative capacitance transistors

[1]  H. Peng,et al.  Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches , 2018, Science.

[2]  P. Ye,et al.  Ferroelectric Field-Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals Heterostructure. , 2018, ACS nano.

[3]  Mengwei Si,et al.  Steep-Slope WSe2 Negative Capacitance Field-Effect Transistor. , 2018, Nano letters.

[4]  Yogesh Singh Chauhan,et al.  Physical Insights on Negative Capacitance Transistors in Nonhysteresis and Hysteresis Regimes: MFMIS Versus MFIS Structures , 2018, IEEE Transactions on Electron Devices.

[5]  Peng Zhou,et al.  Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating , 2017, npj 2D Materials and Applications.

[6]  H. Peng,et al.  Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes. , 2017, Nano letters.

[7]  S. Haigh,et al.  Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures. , 2017, Nano letters.

[8]  S. Salahuddin,et al.  Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors. , 2017, Nano letters.

[9]  Meng-Fan Chang,et al.  Enabling Energy-Efficient Nonvolatile Computing With Negative Capacitance FET , 2017, IEEE Transactions on Electron Devices.

[10]  Kaushik Roy,et al.  Design Space Exploration of Hysteresis-Free HfZrOx-Based Negative Capacitance FETs , 2017, IEEE Electron Device Letters.

[11]  Saurabh Sinha,et al.  Performance Evaluation of 7-nm Node Negative Capacitance FinFET-Based SRAM , 2017, IEEE Electron Device Letters.

[12]  Joshua H. Carpenter,et al.  Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices , 2017 .

[13]  Hong Zhou,et al.  Steep-slope hysteresis-free negative capacitance MoS2 transistors , 2017, Nature Nanotechnology.

[14]  Zhenyu Zhang,et al.  Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials , 2017, Nature Communications.

[15]  Jaehyun Lee,et al.  Analysis of Drain-Induced Barrier Rising in Short-Channel Negative-Capacitance FETs and Its Applications , 2017, IEEE Transactions on Electron Devices.

[16]  Ole Bethge,et al.  A microprocessor based on a two-dimensional semiconductor , 2016, Nature Communications.

[17]  Sergei V. Kalinin,et al.  Size-effect in layered ferrielectric CuInP2S6 , 2016 .

[18]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[19]  G. Pahwa,et al.  Designing energy efficient and hysteresis free negative capacitance FinFET with negative DIBL and 3.5X ION using compact modeling approach , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[20]  Zhihui Cheng,et al.  Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer , 2016 .

[21]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[22]  P. Ajayan,et al.  Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes , 2016, Nature Communications.

[23]  Akira Toriumi,et al.  Structural advantages of silicon-on-insulator FETs over FinFETs in steep subthreshold-swing operation in ferroelectric-gate FETs , 2016 .

[24]  Sergei V. Kalinin,et al.  Quantitative Analysis of the Local Phase Transitions Induced by Laser Heating. , 2015, ACS nano.

[25]  Masaharu Kobayashi,et al.  Device design guideline for steep slope ferroelectric FET using negative capacitance in sub-0.2V operation: Operation speed, material requirement and energy efficiency , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[26]  Sergei V. Kalinin,et al.  CuInP₂S₆ Room Temperature Layered Ferroelectric. , 2015, Nano letters.

[27]  Bo Liu,et al.  Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors , 2015 .

[28]  Kaustav Banerjee,et al.  A Compact Current–Voltage Model for 2D Semiconductor Based Field-Effect Transistors Considering Interface Traps, Mobility Degradation, and Inefficient Doping Effect , 2014, IEEE Transactions on Electron Devices.

[29]  Hao Wu,et al.  Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics , 2014, Nature Communications.

[30]  Xu Du,et al.  Extrinsic and intrinsic charge trapping at the graphene/ferroelectric interface. , 2014, Nano letters.

[31]  Lijun Wu,et al.  Interface-induced nonswitchable domains in ferroelectric thin films , 2014, Nature Communications.

[32]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[33]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[34]  Saul Rodriguez,et al.  A Comprehensive Graphene FET Model for Circuit Design , 2013, IEEE Transactions on Electron Devices.

[35]  Chenming Hu,et al.  Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs , 2013, 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S).

[36]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[37]  Cheolmin Park,et al.  Flexible Non‐Volatile Ferroelectric Polymer Memory with Gate‐Controlled Multilevel Operation , 2012, Advanced materials.

[38]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[39]  Sergei V. Kalinin,et al.  Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. , 2012, Nano letters.

[40]  S. Shi,et al.  Effect of strain and deadlayer on the polarization switching of ferroelectric thin film , 2011 .

[41]  Stephen Jesse,et al.  The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. , 2011, ACS nano.

[42]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[43]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[44]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[45]  R. Cavin,et al.  Nanoelectronics: negative capacitance to the rescue? , 2008, Nature nanotechnology.

[46]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[47]  P. McMillan,et al.  Pressure-induced phase transition in ferrielectric CuInP2S6 , 1998 .

[48]  Anantha P. Chandrakasan,et al.  Minimizing power consumption in digital CMOS circuits , 1995, Proc. IEEE.

[49]  P. Ye,et al.  A Closed Form Analytical Model of Back-Gated 2-D Semiconductor Negative Capacitance Field Effect Transistors , 2018, IEEE Journal of the Electron Devices Society.

[50]  P. Su,et al.  Interface discrete trap induced variability for negative capacitance FinFETs , 2018, 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).