A Free Energy Principle for Biological Systems.

This paper describes a free energy principle that tries to explain the ability of biological systems to resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic formulations of self-organization (e.g., the slaving principle) and models of coupled dynamical systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by separating the states of a random dynamical system into external and internal states, where external states are subject to random fluctuations and internal states are not. This reduces the problem to finding some (deterministic) dynamics of the internal states that ensure the system visits a limited number of external states; in other words, the measure of its (random) attracting set, or the Shannon entropy of the external states is small. We motivate a solution using a principle of least action based on variational free energy (from statistical physics) and establish the conditions under which it is formally equivalent to the information bottleneck method. This approach has proved useful in understanding the functional architecture of the brain. The generality of variational free energy minimisation and corresponding information theoretic formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or evolutionary biology.

[1]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[2]  A. Maritan,et al.  Applications of the principle of maximum entropy: from physics to ecology , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Karl J. Friston,et al.  Free Energy and Dendritic Self-Organization , 2011, Front. Syst. Neurosci..

[4]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[5]  Karl J. Friston,et al.  Generalised Filtering , 2010 .

[6]  T. Frank Nonlinear Fokker-Planck Equations: Fundamentals and Applications , 2004 .

[7]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[8]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[10]  H. Qian,et al.  Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. , 2005, Biophysical chemistry.

[11]  Michael Brereton,et al.  Synergetics: An Introduction – Nonequilibrium Phase Transitions and Self–Organisation in Physics, Chemistry and Biology , 1978 .

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  Karl J. Friston,et al.  A free energy principle for the brain , 2006, Journal of Physiology-Paris.

[14]  Karl J. Friston,et al.  Cortical circuits for perceptual inference , 2009, Neural Networks.

[15]  Hans Crauel,et al.  Global random attractors are uniquely determined by attracting deterministic compact sets , 1999 .

[16]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[17]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[18]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[19]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[20]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[21]  Sebastian J. Schreiber,et al.  Persistence in fluctuating environments , 2010, Journal of mathematical biology.

[22]  A. E. Hirsh,et al.  The application of statistical physics to evolutionary biology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Elworthy RANDOM DYNAMICAL SYSTEMS (Springer Monographs in Mathematics) , 2000 .

[24]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[25]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[26]  Karl J. Friston,et al.  Action understanding and active inference , 2011, Biological Cybernetics.

[27]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[28]  Karl J. Friston,et al.  Action and behavior: a free-energy formulation , 2010, Biological Cybernetics.

[29]  W. Ashby,et al.  Principles of the self-organizing dynamic system. , 1947, The Journal of general psychology.

[30]  H. Helmholtz Concerning the perceptions in general, 1867. , 1948 .

[31]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[32]  Aihua Hu,et al.  The existence of generalized synchronization of chaotic systems in complex networks. , 2010, Chaos.

[33]  W. Ashby,et al.  Every Good Regulator of a System Must Be a Model of That System , 1970 .

[34]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[35]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[36]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[37]  Viktor K. Jirsa,et al.  A theoretical model of phase transitions in the human brain , 1994, Biological Cybernetics.

[38]  H. Qian Entropy demystified the "thermo"-dynamics of stochastically fluctuating systems. , 2009, Methods in enzymology.

[39]  K. Cheng Theory of Superconductivity , 1948, Nature.

[40]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[41]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[42]  Gennaro Auletta,et al.  A Paradigm Shift in Biology? , 2010, Inf..

[43]  P. Ao Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics. , 2008, Communications in theoretical physics.

[44]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[45]  H. Haken,et al.  Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation , 2007 .

[46]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[47]  Michael J Davis,et al.  Low-dimensional manifolds in reaction-diffusion equations. 1. Fundamental aspects. , 2006, The journal of physical chemistry. A.

[48]  R. Gregory,et al.  Perceptual illusions and brain models , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  Karl J. Friston,et al.  Frontiers in Neuroinformatics , 2022 .

[50]  久保 亮五,et al.  H. Haken: Synergetics; An Introduction Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, Berlin and Heidelberg, 1977, viii+325ページ, 251×17.5cm, 11,520円. , 1978 .

[51]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[52]  Daniel A. Braun,et al.  Thermodynamics as a theory of decision-making with information-processing costs , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[54]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[55]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[56]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[57]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[58]  D. Mackay Free energy minimisation algorithm for decoding and cryptanalysis , 1995 .

[59]  Karl J. Friston,et al.  Free Energy, Value, and Attractors , 2011, Comput. Math. Methods Medicine.

[60]  Karl J. Friston,et al.  Attention, Uncertainty, and Free-Energy , 2010, Front. Hum. Neurosci..

[61]  Michael J Davis,et al.  Low-dimensional manifolds in reaction-diffusion equations. 2. Numerical analysis and method development. , 2006, The journal of physical chemistry. A.

[62]  Hans Crauel,et al.  Random attractors , 1997 .

[63]  Daniel A. Braun,et al.  A Minimum Relative Entropy Principle for Learning and Acting , 2008, J. Artif. Intell. Res..