IMPROVING THE PERFORMANCE OF BAYESIAN AND SUPPORT VECTOR CLASSIFIERS IN WORD SENSE DISAMBIGUATION USING POSITIONAL INFORMATION
暂无分享,去创建一个
Tapio Salakoski | Sampo Pyysalo | Tapio Pahikkala | Aleksandr Mylläri | Jorma Boberg | T. Salakoski | Sampo Pyysalo | J. Boberg | T. Pahikkala | A. Mylläri
[1] Tapio Salakoski,et al. New Techniques for Disambiguation in Natural Language and Their Application to Biological Text , 2004, J. Mach. Learn. Res..
[2] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[3] Tom Fawcett,et al. ROC Graphs: Notes and Practical Considerations for Data Mining Researchers , 2003 .
[4] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[5] David Yarowsky,et al. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.
[6] Pat Langley,et al. Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.
[7] F ChenStanley,et al. An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.
[8] Tapio Salakoski,et al. Kernels Incorporating Word Positional Information in Natural Language Disambiguation Tasks , 2005, FLAIRS.
[9] Jean-Michel Renders,et al. Word-Sequence Kernels , 2003, J. Mach. Learn. Res..
[10] D. Id,et al. Evaluating sense disambiguation across diverse parameter spaces , 2002 .
[11] Laurent Audibert,et al. Word sense disambiguation criteria: a systematic study , 2004, COLING.
[12] Tomaso Poggio,et al. Everything old is new again: a fresh look at historical approaches in machine learning , 2002 .
[13] Adam Kilgarriff,et al. The Senseval-3 English lexical sample task , 2004, SENSEVAL@ACL.
[14] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[15] Alexander J. Smola,et al. Classification in a normalized feature space using support vector machines , 2003, IEEE Trans. Neural Networks.