using whole-genome sequencing Mutational and structural analysis of diffuse large B-cell lymphoma

A. Marra Steidl, Robert Holt, Inanc Birol, Richard Moore, Joseph M. Connors, Randy D. Gascoyne and Marco Farnoud, Sanja Rogic, Emilia L. Lim, Nathalie A. Johnson, Sohrab Shah, Steven Jones, Christian Khodabakhshi, Susana Ben-Neriah, Julia Pon, Barbara Meissner, Bruce Woolcock, Noushin Maria Mendez-Lago, Diane L. Trinh, Madison Bolger-Munro, Greg Taylor, Alireza Hadj David W. Scott, Jiarui Ding, Andrew Roth, Readman Chiu, Richard D. Corbett, Fong Chun Chan, Ryan D. Morin, Karen Mungall, Erin Pleasance, Andrew J. Mungall, Rodrigo Goya, Ryan D. Huff, using whole-genome sequencing Mutational and structural analysis of diffuse large B-cell lymphoma

[1]  Jan Delabie,et al.  Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma , 2010, Nature.

[2]  Raul Rabadan,et al.  Inactivating mutations of acetyltransferase genes in B-cell lymphoma , 2010, Nature.

[3]  Steven J. M. Jones,et al.  Frequent mutation of histone modifying genes in non-Hodgkin lymphoma , 2011, Nature.

[4]  L. Staudt,et al.  Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics , 2012, Nature.

[5]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[6]  C. Capella,et al.  MSH3 Protein Expression and Nodal Status in MLH1-Deficient Colorectal Cancers , 2012, Clinical Cancer Research.

[7]  Ash A. Alizadeh,et al.  Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. , 2012, Blood.

[8]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[9]  M. Stratton,et al.  Statistical Analysis of Pathogenicity of Somatic Mutations in Cancer , 2006, Genetics.

[10]  L. Staudt,et al.  Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways , 2008, Proceedings of the National Academy of Sciences.

[11]  W. Sellers,et al.  Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity , 2000, Oncogene.

[12]  R. Proia,et al.  The sphingosine 1-phosphate receptor S1P2 maintains germinal center B cell homeostasis and promotes niche confinement , 2011, Nature Immunology.

[13]  Michael D. Davis,et al.  B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. , 2009, Immunity.

[14]  Kenric Leung,et al.  The Life History of 21 Breast Cancers , 2015, Cell.

[15]  Masakazu Yamamoto,et al.  Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas , 2011, Scientific reports.

[16]  Xin Cai,et al.  Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage , 2008, Proceedings of the National Academy of Sciences.

[17]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[18]  H. Sheppard,et al.  Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. , 2004, Molecular cell.

[19]  Raul Rabadan,et al.  Analysis of the Coding Genome of Diffuse Large B-Cell Lymphoma , 2011, Nature Genetics.

[20]  L. Pasqualucci,et al.  Aberrant Somatic Hypermutation Targets an Extensive Set of Genes in Diffuse Large B-Cell Lymphoma. , 2004 .

[21]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[22]  Steven J. M. Jones,et al.  Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. , 2013, Blood.

[23]  Steven J. M. Jones,et al.  Recurrent targets of aberrant somatic hypermutation in lymphoma , 2012, Oncotarget.

[24]  Inanç Birol,et al.  De novo transcriptome assembly with ABySS , 2009, Bioinform..

[25]  K. Hoang-Xuan,et al.  Recurrent Mutations of MYD88 and TBL1XR1 in Primary Central Nervous System Lymphomas , 2012, Clinical Cancer Research.

[26]  L. Pasqualucci,et al.  Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. , 2009, Cancer research.

[27]  Ryan D. Morin,et al.  Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution , 2009, Nature.

[28]  R. V. van Lier,et al.  Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. , 1995, Journal of immunology.

[29]  David Dunson,et al.  Genetic heterogeneity of diffuse large B-cell lymphoma , 2013, Proceedings of the National Academy of Sciences.

[30]  Stefano Monti,et al.  Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. , 2012, Cancer cell.

[31]  R. Spang,et al.  Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing , 2012, Nature Genetics.

[32]  R. Watanabe,et al.  CD83 influences cell-surface MHC class II expression on B cells and other antigen-presenting cells. , 2007, International immunology.

[33]  L. Staudt,et al.  Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. , 2004, Blood.

[34]  S. Meloche,et al.  The IKK-related kinases: from innate immunity to oncogenesis , 2008, Cell Research.

[35]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[36]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[37]  Steven J. M. Jones,et al.  Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors , 2010, Genome Biology.

[38]  Kevin P. Murphy,et al.  SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors , 2010, Bioinform..

[39]  Ryan D. Morin,et al.  TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. , 2012, Blood.

[40]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[41]  J. Cyster,et al.  Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. , 2012, Annual review of immunology.

[42]  A. Bashashati,et al.  DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer , 2012, Genome Biology.

[43]  Y. Okamoto,et al.  Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 - Jekyll Hidden behind Hyde. , 2011, American journal of cancer research.

[44]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[45]  Gholamreza Haffari,et al.  Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data , 2011, Bioinform..

[46]  A. Bashashati,et al.  Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer , 2012, Genome research.

[47]  E. Kawasaki,et al.  Two G protein oncogenes in human endocrine tumors. , 1990, Science.

[48]  Eric S. Lander,et al.  Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing , 2012, Proceedings of the National Academy of Sciences.

[49]  N. Carter,et al.  Estimation of rearrangement phylogeny for cancer genomes. , 2012, Genome research.