The Importance of Mesh Adaptation for Higher-Order Discretizations of Aerodynamic Flows

This work presents an adaptive framework for a higher-order discretization of the Reynolds-averaged Navier-Stokes (RANS) equations. The adaptation strategy is based on an output-based error estimate and explicit control of the degrees of freedom. Adaptation iterates toward the generation of simplex meshes that equidistribute local errors throughout the domain and provide anisotropic resolution in arbitrary orientations. Numerical experiments reveal that uniform re nement limits the performance of higher-order methods when applied to aerodynamic ows with low regularity. However, when combined with anisotropic re nement of singular features, higher-order methods can signi cantly improve computational a ordability of RANS simulations in the engineering environment. The bene t of the higher spatial accuracy is exhibited for a wide range of applications including subsonic, transonic, and supersonic ows. The higher-order simplex meshes are generated using the elasticity and the cut-cell techniques, and the competitiveness of the cut-cell method is demonstrated in terms of accuracy per degree of freedom.

[1]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[2]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[3]  David L. Darmofal,et al.  Toward a Robust, Higher-Order Cut-Cell Method for Viscous Flows , 2010 .

[4]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[5]  William Gropp,et al.  Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD , 2000, Int. J. High Perform. Comput. Appl..

[6]  D. Darmofal,et al.  Discontinuous Galerkin solutions of the Navier-Stokes Equations using Linear Multigrid Preconditioning , 2007 .

[7]  Andrea Crivellini,et al.  High-order discontinuous Galerkin discretization of transonic turbulent flows , 2009 .

[8]  Per-Olof Persson,et al.  RANS Solutions Using High Order Discontinuous Galerkin Methods , 2007 .

[9]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[10]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[11]  M. Steven,et al.  Comparative Results From a CFD Challenge Over a 2D Three-Element High-Lift Airfoil , 1997 .

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  David L. Darmofal,et al.  Impact of Turbulence Model Irregularity on High-Order Discretizations , 2009 .

[14]  David L. Darmofal,et al.  A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[15]  David L. Darmofal,et al.  Output Error Estimation and Adaptation in Computational Fluid Dynamics: Overview and Recent Results , 2009 .

[16]  Ewald Krämer,et al.  A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .

[17]  David L. Darmofal,et al.  On Dual-Weighted Residual Error Estimates for p-Dependent Discretizations , 2011 .

[18]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[19]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[20]  Michael Andrew Park,et al.  Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2004 .

[21]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[22]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[23]  Eric J. Nielsen,et al.  Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction , 2006 .

[24]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[25]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[26]  W. K. Anderson,et al.  Recent improvements in aerodynamic design optimization on unstructured meshes , 2001 .

[27]  David L. Darmofal,et al.  Output-based Adaptive Meshing Using Triangular Cut Cells , 2006 .

[28]  Dimitri J. Mavriplis,et al.  Efficient Solution Techniques for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations on Hybrid Anisotropic Meshes , 2010 .

[29]  Per-Olof Persson,et al.  Curved mesh generation and mesh refinement using Lagrangian solid mechanics , 2008 .

[30]  Ralf Hartmann,et al.  Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows , 2010 .

[31]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[32]  Elizabeth M. Lee-Rausch,et al.  Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations , 2005 .

[33]  F. Alauzet,et al.  Continuous Mesh Model and Well-Posed Continuous Interpolation Error Estimation , 2009 .

[34]  David L. Darmofal,et al.  An adaptive simplex cut-cell method for discontinuous Galerkin discretizations of the Navier-Stokes equations , 2007 .

[35]  David L. Darmofal,et al.  Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation , 2010, J. Comput. Phys..

[36]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[37]  Michael Andrew Park,et al.  Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2002 .

[38]  Todd A. Oliver A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations , 2008 .

[39]  Per-Olof Persson,et al.  Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier--Stokes Equations , 2008, SIAM J. Sci. Comput..

[40]  David L. Darmofal,et al.  An Optimization Framework for Anisotropic Simplex Mesh Adaptation: Application to Aerodynamic Flows , 2012 .

[41]  James M Modisette An automated reliable method for two-dimensional Reynolds-Averaged Navier-Stokes simulations , 2011 .