Two Variables per Linear Inequality as an Abstract Domain
暂无分享,去创建一个
Jacob M. Howe | Andy King | Axel Simon | A. King | J. M. Howe | A. Simon
[1] Jeffrey C. Lagarias,et al. The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[2] Antoine Mid. The Octagon Abstract Domain , 2001 .
[3] Antoine Miné,et al. The octagon abstract domain , 2001, Proceedings Eighth Working Conference on Reverse Engineering.
[4] Jacob M. Howe,et al. Specialising Finite Domain Programs Using Polyhedra , 1999, ECOOP Workshops.
[5] Antoine Miné,et al. A New Numerical Abstract Domain Based on Difference-Bound Matrices , 2001, PADO.
[6] Michael Karr,et al. Affine relationships among variables of a program , 1976, Acta Informatica.
[7] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[8] Joseph Naor,et al. Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..
[9] Raimund Seidel. Convex Hull Computations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[10] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[11] Ernest Davis,et al. Constraint Propagation with Interval Labels , 1987, Artif. Intell..
[12] William H. Harrison,et al. Compiler Analysis of the Value Ranges for Variables , 1977, IEEE Transactions on Software Engineering.
[13] Sidnie Dresher Feit. A Fast Algorithm for the Two-Variable Integer Programming Problem , 1984, JACM.
[14] H. Raynaud. Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .
[15] Christian Buchta,et al. On the Average Number of Maxima in a Set of Vectors , 1989, Inf. Process. Lett..
[16] Yehoshua Sagiv,et al. Automatic Termination Analysis of Logic Programs , 1997, ICLP.
[17] Roberto Bagnara,et al. Data-Flow Analysis for Constraint Logic-Based Languages , 1999 .
[18] Antoine Miné,et al. A Few Graph-Based Relational Numerical Abstract Domains , 2002, SAS.
[19] Elliot K. Kolodner,et al. Automatic Removal of Array Memory Leaks in Java , 2000, CC.
[20] V. Pratt. Two Easy Theories Whose Combination is Hard , 2002 .
[21] H. T. Kung,et al. On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.
[22] N. V. Chernikoba. Algorithm for discovering the set of all the solutions of a linear programming problem , 1968 .
[23] Jeffrey C. Lagarias. The Computational Complexity of Simultaneous Diophantine Approximation Problems , 1985, SIAM J. Comput..
[24] C. G. Nelson. An $n^{log n}$ algorithm for the two-variable-per-constraint linear programming satisfiability problem , 1978 .
[25] Ken Kennedy,et al. A technique for summarizing data access and its use in parallelism enhancing transformations , 1989, PLDI '89.
[26] Philippe Granger,et al. Static Analysis of Linear Congruence Equalities among Variables of a Program , 1991, TAPSOFT, Vol.1.
[27] Warwick Harvey,et al. Computing Two-Dimensional Integer Hulls , 1999, SIAM J. Comput..
[28] Wang Yi,et al. Clock Difference Diagrams , 1998, Nord. J. Comput..
[29] H. L. Verge. A Note on Chernikova's algorithm , 1992 .
[30] Patrick Cousot,et al. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation , 1992, PLILP.
[31] Henrik Reif Andersen,et al. Difference Decision Diagrams , 1999, CSL.
[32] Nicolas Halbwachs,et al. Automatic discovery of linear restraints among variables of a program , 1978, POPL.
[33] David A. Wagner,et al. A First Step Towards Automated Detection of Buffer Overrun Vulnerabilities , 2000, NDSS.
[34] Robert E. Shostak,et al. Deciding Linear Inequalities by Computing Loop Residues , 1981, JACM.
[35] Michael J. Maher,et al. Beyond Finite Domains , 1994, PPCP.
[36] Andy King,et al. Inferring Argument Size Relationships with CLP(R) , 1996, LOPSTR.