Quantum teleportation with infinite reference-frame uncertainty
暂无分享,去创建一个
[1] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[2] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[3] V. Scarani,et al. Reference-frame-independent quantum key distribution , 2010, 1003.1050.
[4] Jamie Vicary,et al. Tight Reference Frame-Independent Quantum Teleportation , 2016, QPL.
[5] Jian-Wei Pan,et al. Ground-to-satellite quantum teleportation , 2017, Nature.
[6] A. Buchleitner,et al. Performances and robustness of quantum teleportation with identical particles , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[7] Karol Zyczkowski,et al. ENTROPIC CHARACTERIZATION OF QUANTUM OPERATIONS , 2011, 1101.4105.
[8] J.G. Rarity,et al. Low Cost Quantum Secret Key Growing for Consumer Transactions , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.
[9] I. Chuang,et al. Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.
[10] Liang Jiang,et al. Efficient long distance quantum communication , 2015, 1509.08435.
[11] T. Rudolph,et al. Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.
[12] W. Munro,et al. Low Cost and Compact Quantum Cryptography , 2006, quant-ph/0608213.
[13] P. Perinotti,et al. Teleportation transfers only speakable quantum information , 2010, 1008.0967.
[14] Fabio Sciarrino,et al. Complete experimental toolbox for alignment-free quantum communication , 2013 .
[15] Gilles Brassard,et al. Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..
[16] Shuang Wang,et al. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding , 2014, Scientific Reports.
[17] L. Susskind,et al. Charge Superselection Rule , 1967 .
[18] W. Munro,et al. Low cost and compact quantum key distribution , 2006, quant-ph/0608213.
[19] Jamie Vicary,et al. Tight quantum teleportation without a shared reference frame , 2017, Physical Review A.
[20] Jaroslaw Adam Miszczak,et al. SINGULAR VALUE DECOMPOSITION AND MATRIX REORDERINGS IN QUANTUM INFORMATION THEORY , 2010, 1011.1585.
[21] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[22] A. Buchleitner,et al. Quantum teleportation with identical particles , 2015, 1502.05814.
[23] Berkeley,et al. Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.
[24] Karol Zyczkowski,et al. On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..
[25] Michele Mosca,et al. Public-key cryptography based on bounded quantum reference frames , 2009, Theor. Comput. Sci..
[26] J. Preskill,et al. Superselection rules and quantum protocols , 2003, quant-ph/0310088.
[27] John E. Roberts,et al. Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics , 1990 .
[28] S. J. van Enk. The physical meaning of phase and its importance for quantum teleportation , 2001 .
[29] Stefano Pirandola,et al. Quantum teleportation with continuous variables: A survey , 2006 .
[30] Mario Ziman,et al. Incomplete quantum process tomography and principle of maximal entropy , 2008, 0802.3892.
[31] H. Bechmann-Pasquinucci,et al. Quantum cryptography , 2001, quant-ph/0101098.
[32] W. Reiher. Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .
[33] E. Bagan,et al. ALIGNING SPATIAL FRAMES THROUGH QUANTUM CHANNELS , 2005 .
[34] Gregory S. Chirikjian,et al. Voronoi cells in lie groups and coset decompositions: Implications for optimization, integration, and fourier analysis , 2013, 52nd IEEE Conference on Decision and Control.
[35] J. O'Brien,et al. Demonstration of free-space reference frame independent quantum key distribution , 2013, 1305.0158.
[36] Stephanie Wehner,et al. Asynchronous reference frame agreement in a quantum network , 2015, 1505.02565.
[37] Lukasz Rudnicki,et al. Entropic trade-off relations for quantum operations , 2012, 1206.2536.
[38] Unspeakable quantum information , 2002, quant-ph/0201017.
[39] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[40] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[41] R. Spekkens,et al. The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.
[42] Robert W. Spekkens,et al. Asymmetry properties of pure quantum states , 2012 .
[43] Dong He,et al. Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.
[44] R. Werner. All teleportation and dense coding schemes , 2000, quant-ph/0003070.
[45] S. Wehner,et al. Spatial reference frame agreement in quantum networks , 2013, 1306.5295.
[46] T. Rudolph,et al. Decoherence-full subsystems and the cryptographic power of a private shared reference frame , 2004, quant-ph/0403161.
[47] L. Bacsardi,et al. On the way to quantum-based satellite communication , 2013, IEEE Communications Magazine.
[48] F. Spedalieri. Quantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum , 2004, quant-ph/0409057.
[49] G. Gour,et al. Alignment of reference frames and an operational interpretation for the G-asymmetry , 2012, 1202.3163.
[50] Norbert Lütkenhaus,et al. Optimal architectures for long distance quantum communication , 2015, Scientific Reports.