Quantum teleportation with infinite reference-frame uncertainty

We present two new schemes for quantum teleportation between parties whose reference frames are misaligned by the action of a compact Lie group. The first scheme produces a channel with increased purity compared to a standard protocol, with no additional classical communication or entangled resource requirements; no information is transmitted about either party's reference frame configuration, and the scheme is robust against changes in reference frame alignment during execution. The second scheme performs perfect teleportation with no additional entangled resource requirements and is robust against changes in reference frame alignment during execution. These schemes involve transmission of the measurement result as unspeakable information, but do not require prior alignment.

[1]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  V. Scarani,et al.  Reference-frame-independent quantum key distribution , 2010, 1003.1050.

[4]  Jamie Vicary,et al.  Tight Reference Frame-Independent Quantum Teleportation , 2016, QPL.

[5]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[6]  A. Buchleitner,et al.  Performances and robustness of quantum teleportation with identical particles , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Karol Zyczkowski,et al.  ENTROPIC CHARACTERIZATION OF QUANTUM OPERATIONS , 2011, 1101.4105.

[8]  J.G. Rarity,et al.  Low Cost Quantum Secret Key Growing for Consumer Transactions , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[9]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[10]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[11]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[12]  W. Munro,et al.  Low Cost and Compact Quantum Cryptography , 2006, quant-ph/0608213.

[13]  P. Perinotti,et al.  Teleportation transfers only speakable quantum information , 2010, 1008.0967.

[14]  Fabio Sciarrino,et al.  Complete experimental toolbox for alignment-free quantum communication , 2013 .

[15]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[16]  Shuang Wang,et al.  Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding , 2014, Scientific Reports.

[17]  L. Susskind,et al.  Charge Superselection Rule , 1967 .

[18]  W. Munro,et al.  Low cost and compact quantum key distribution , 2006, quant-ph/0608213.

[19]  Jamie Vicary,et al.  Tight quantum teleportation without a shared reference frame , 2017, Physical Review A.

[20]  Jaroslaw Adam Miszczak,et al.  SINGULAR VALUE DECOMPOSITION AND MATRIX REORDERINGS IN QUANTUM INFORMATION THEORY , 2010, 1011.1585.

[21]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[22]  A. Buchleitner,et al.  Quantum teleportation with identical particles , 2015, 1502.05814.

[23]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[24]  Karol Zyczkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[25]  Michele Mosca,et al.  Public-key cryptography based on bounded quantum reference frames , 2009, Theor. Comput. Sci..

[26]  J. Preskill,et al.  Superselection rules and quantum protocols , 2003, quant-ph/0310088.

[27]  John E. Roberts,et al.  Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics , 1990 .

[28]  S. J. van Enk The physical meaning of phase and its importance for quantum teleportation , 2001 .

[29]  Stefano Pirandola,et al.  Quantum teleportation with continuous variables: A survey , 2006 .

[30]  Mario Ziman,et al.  Incomplete quantum process tomography and principle of maximal entropy , 2008, 0802.3892.

[31]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[32]  W. Reiher Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .

[33]  E. Bagan,et al.  ALIGNING SPATIAL FRAMES THROUGH QUANTUM CHANNELS , 2005 .

[34]  Gregory S. Chirikjian,et al.  Voronoi cells in lie groups and coset decompositions: Implications for optimization, integration, and fourier analysis , 2013, 52nd IEEE Conference on Decision and Control.

[35]  J. O'Brien,et al.  Demonstration of free-space reference frame independent quantum key distribution , 2013, 1305.0158.

[36]  Stephanie Wehner,et al.  Asynchronous reference frame agreement in a quantum network , 2015, 1505.02565.

[37]  Lukasz Rudnicki,et al.  Entropic trade-off relations for quantum operations , 2012, 1206.2536.

[38]  Unspeakable quantum information , 2002, quant-ph/0201017.

[39]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[40]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[41]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[42]  Robert W. Spekkens,et al.  Asymmetry properties of pure quantum states , 2012 .

[43]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[44]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[45]  S. Wehner,et al.  Spatial reference frame agreement in quantum networks , 2013, 1306.5295.

[46]  T. Rudolph,et al.  Decoherence-full subsystems and the cryptographic power of a private shared reference frame , 2004, quant-ph/0403161.

[47]  L. Bacsardi,et al.  On the way to quantum-based satellite communication , 2013, IEEE Communications Magazine.

[48]  F. Spedalieri Quantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum , 2004, quant-ph/0409057.

[49]  G. Gour,et al.  Alignment of reference frames and an operational interpretation for the G-asymmetry , 2012, 1202.3163.

[50]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.