On the limitations of the use of solvable groups in Cayley graph cage constructions
暂无分享,去创建一个
[1] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[2] S. Glasby. Groups St Andrews 1997 in Bath, I: Subgroups of the upper-triangular matrix group with maximal derived length and a minimal number of generators , 2014, 1410.5052.
[3] Geoffrey Exoo,et al. Voltage Graphs, Group Presentations and Cages , 2004, Electron. J. Comb..
[4] David Pask,et al. Voltage Graphs , 2007 .
[5] H. Sachs. Regular Graphs with Given Girth and Restricted Circuits , 1963 .
[6] Norman L. Biggs,et al. Note on the girth of Ramanujan graphs , 1990, J. Comb. Theory, Ser. B.
[7] Stephen Glasby. The composition and derived lengths of a soluble group , 1989 .
[8] E. Schenkman,et al. Group Theory , 1965 .
[9] W. Magnus,et al. Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .
[10] Geoffrey Exoo. A Small Trivalent Graph of Girth 14 , 2002, Electron. J. Comb..
[11] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[12] Norman Biggs,et al. Constructions for Cubic Graphs with Large Girth , 1998, Electron. J. Comb..
[13] A. Lubotzky,et al. Ramanujan graphs , 2017, Comb..
[14] M. Newman,et al. On the soluble length of groups with prime-power order , 1999, Bulletin of the Australian Mathematical Society.
[15] G. Exoo,et al. Dynamic Cage Survey , 2011 .