Linked-cluster technique for finding the distance of a quantum LDPC code
暂无分享,去创建一个
[1] David Poulin,et al. Tradeoffs for reliable quantum information storage in 2D systems , 2010, Quantum Cryptography and Computing.
[2] Austin G. Fowler,et al. A primer on surface codes: Developing a machine language for a quantum computer , 2012 .
[3] T. Schaetz,et al. Simulating a quantum magnet with trapped ions , 2008 .
[4] Jacques Stern,et al. A method for finding codewords of small weight , 1989, Coding Theory and Applications.
[5] David Poulin,et al. On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..
[6] Matthias Steffen,et al. Simultaneous State Measurement of Coupled Josephson Phase Qubits , 2005, Science.
[7] Markus Grassl,et al. Searching for linear codes with large minimum distance , 2006 .
[8] Leonid P. Pryadko,et al. Fault-Tolerance of"Bad"Quantum Low-Density Parity Check Codes , 2012 .
[9] Rodney M. Goodman,et al. The complexity of information set decoding , 1990, IEEE Trans. Inf. Theory.
[10] Wieb Bosma,et al. Discovering Mathematics with Magma , 2006 .
[11] Ilya Dumer,et al. Suboptimal decoding of linear codes: partition technique , 1996, IEEE Trans. Inf. Theory.
[12] O. Astafiev,et al. Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.
[13] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[14] J. Preskill,et al. Topological quantum memory , 2001, quant-ph/0110143.
[15] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[16] Ilya Dumer. Soft-decision decoding using punctured codes , 2001, IEEE Trans. Inf. Theory.
[17] L. Pryadko,et al. Fault tolerance of quantum low-density parity check codes with sublinear distance scaling , 2013 .
[18] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[19] Helmut G. Katzgraber,et al. Strong resilience of topological codes to depolarization , 2012, 1202.1852.
[20] Zhi Ma,et al. A finite Gilbert-Varshamov bound for pure stabilizer quantum codes , 2004, IEEE Transactions on Information Theory.
[21] Leonid P. Pryadko,et al. Improved quantum hypergraph-product LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[22] Robert Raussendorf,et al. Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.
[23] Chin-Kun Hu,et al. Exact cluster size distributions and mean cluster sizes for the q-state bond-correlated percolation model , 1987 .
[24] Leonid P Pryadko,et al. Universal set of scalable dynamically corrected gates for quantum error correction with always-on qubit couplings. , 2012, Physical review letters.
[25] Amir Yacoby,et al. Long-Distance Spin-Spin Coupling via Floating Gates , 2011, Physical Review X.
[26] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[27] Michael S. Postol. A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.
[28] Markus Grassl,et al. A New Minimum Weight Algorithm for Additive Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[29] R. Blatt,et al. Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.
[30] I. Chuang,et al. Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.
[31] L. Pryadko,et al. Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.
[32] Jeffrey S. Leon,et al. A probabilistic algorithm for computing minimum weights of large error-correcting codes , 1988, IEEE Trans. Inf. Theory.
[33] Po-Shen Loh,et al. Probabilistic Methods in Combinatorics , 2009 .
[34] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[35] J. Spencer. Probabilistic Methods in Combinatorics , 1974 .
[36] Iryna Andriyanova,et al. New constructions of CSS codes obtained by moving to higher alphabets , 2012, ArXiv.
[37] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[38] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[39] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[40] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[41] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[42] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[43] Gilles Zémor,et al. Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.
[44] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[45] Hideki Imai,et al. Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.