A Hierarchical Flow Capturing Location Problem with Demand Attraction Based on Facility Size, and Its Lagrangian Relaxation Solution Method

This article presents a hierarchical flow capturing location problem (HFCLP) and proposes an effective Lagrangian heuristic solution method. The original flow capturing location problem (FCLP) aims to locate a given number of facilities on a network to maximize the total flow that can be serviced at facilities along their preplanned routes, such as daily commute to work. We extend the original model to allow a decision maker to select the size of facilities among m different size alternatives. Larger facilities are assumed to be more attractive and, therefore, can attract more customers, but they cost more to construct than smaller ones. Customers deviate from their preplanned routes to access a facility's service when the size of the facility is sufficiently large. The degree of deviation from the original path is measured by the additional distance customers have to go to access facilities, and the acceptable deviation distance becomes larger as the size of a facility increases. This article presents a new problem in which the number of facilities of each size and their locations are simultaneously determined so as to capture as much flow as possible within the total budget available for locating all facilities. We present an integer programming formulation of the problem and devise a Lagrangian relaxation solution method. The proposed algorithm is tested using road networks with 300 and 500 nodes. The results show that the method produces high-quality solutions in a fairly short time. Este articulo presenta un problema de localizacion de captura de flujo jerarquico (hierarchical flow capturing location problem-HFCLP) y propone un metodo heuristico eficiente de tipo Lagrange (lagrangian). En su formulacion original el HFLCP tiene como objetivo localizar un numero determinado de instalaciones en una red con el fin de maximizar el flujo total que puede ser atendido por las instalaciones existentes a lo largo de rutas preestablecidas, como en el caso por ejemplo, de los desplazamientos diarios del lugar de residencia al de trabajo. Los autores amplian el modelo original para permitir que el tomador de decisiones seleccione el tamano de las instalaciones entre “m” alternativas. Se asume que las instalaciones mas grandes son mas atractivas que las mas pequenas y, por lo tanto, pueden atraer a mas clientes, pero a la vez, son tambien mas costosas de construir. Los clientes se desvian de su ruta preestablecida para acceder al servicio de una instalacion cuando el tamano de la instalacion es lo suficientemente grande. El grado de desviacion de las rutas se mide por la distancia adicional que los clientes viajan para acceder a las instalaciones. La distancia de desviacion aceptable se hace mas grande en relacion al tamano de la instalacion. En este articulo se presenta un nuevo modelo para el HFLCP en el que el numero de las instalaciones de cada tamano y su ubicacion son determinadas simultaneamente con el fin de capturar la mayor cantidad de flujo dentro del presupuesto total disponible para la localizacion de todas las instalaciones. Los autores presentan una formulacion de programacion entera (integer programming) del HFCLP e implementan un metodo que relaja la solucion lagrangiana. El algoritmo propuesto es evaluado utilizando redes viales con 300 y 500 nodos. Los resultados muestran que el nuevo metodo produce soluciones de alta calidad y en tiempos de computacion relativamente cortos. 本文介绍了一种分层的截流选址问题 (HFCLP),提出了一个有效的拉格朗日启发式解决方法。最初的截流选址问题(FCLP)目标是在网络上布局给定数量的设施使总流量最大,使按预定路线的行进流可以获得最大的服务,如每日的工作通勤。本文对原始模型进行扩展,让决策者可在不同的设施规模选择方案中进行规模选择。假设更大规模设施具有更大的吸引力,因此也能够吸引更多的客户,但同时也需要更多的建造成本。当设施规模足够大时,消费者会选择偏离预定路径而进入该设施的服务范围。对原始路径的偏离程度可通过用户进入该设施所增加的额外距离度量。可接受的偏差距离随着设施规模增大而增大。本文提出了在总预算确定条件下,同步确定不同规模设施数量及其位置以实现截取最大流量的新问题,并给出了该问题的整数规划方法,设计了拉格朗日松弛解法。通过300和500个节点的网络测试,结果显示该算法可在相当短时间内获得高质量的解决方案。

[1]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[2]  Richard L. Church,et al.  The maximal covering location problem , 1974 .

[3]  Richard L. Church,et al.  The Team/Fleet Models for Simultaneous Facility and Equipment Siting , 1979 .

[4]  Charles ReVelle,et al.  The Hierarchical Service Location Problem , 1982 .

[5]  Subhash C. Narula Hierarchical location-allocation problems: A classification scheme , 1984 .

[6]  Subhash C. Narula,et al.  Minisum hierarchical location-allocation problems on a network: A survey , 1986 .

[7]  Oded Berman,et al.  Optimal Location of Discretionary Service Facilities , 1992, Transp. Sci..

[8]  Oded Berman,et al.  Flow-Interception Problems , 1995 .

[9]  Obed Berman The maximizing market size discretionary facility location problem with congestion , 1995 .

[10]  Oded Berman,et al.  Locating Discretionary Service Facilities, II: Maximizing Market Size, Minimizing Inconvenience , 1995, Oper. Res..

[11]  C. Revelle,et al.  A Lagrangean heuristic for the maximal covering location problem , 1996 .

[12]  I. Averbakh,et al.  Locating flow-capturing units on a network with multi-counting and diminishing returns to scale , 1996 .

[13]  Haldun Süral,et al.  A review of hierarchical facility location models , 2007, Comput. Oper. Res..

[14]  Michael Kuby,et al.  Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs , 2007 .

[15]  Tanaka Ken-ichi,et al.  Optimal Location and Opening Hours of a Single Facility which Maximally Cover Flows in a Circular City , 2008 .

[16]  Zvi Drezner,et al.  The variable radius covering problem , 2009, Eur. J. Oper. Res..

[17]  M. John Hodgson,et al.  The Pickup Problem: Consumers' Locational Preferences in Flow Interception , 2009 .

[18]  Michael Kuby,et al.  Optimization of hydrogen stations in Florida using the Flow-Refueling Location Model , 2009 .

[19]  Charles ReVelle,et al.  Central Facilities Location , 2010 .

[20]  M. J. Hodgson A Flow-Capturing Location-Allocation Model , 2010 .

[21]  M. John Hodgson,et al.  Locating Vehicle Inspection Stations to Protect a Transportation Network , 2010 .

[22]  M. John Hodgson,et al.  A Generalized Model for Locating Facilities on a Network with Flow-Based Demand , 2010 .