The effect of lithium-intercalation on the mechanical properties of carbon fibres

[1]  Dan Zenkert,et al.  Expansion of carbon fibres induced by lithium intercalation for structural electrode applications , 2013 .

[2]  M. Behm,et al.  Electrochemical Characterization of Lithium Intercalation Processes of PAN-Based Carbon Fibers in a Microelectrode System , 2013 .

[3]  A. Sastry,et al.  Effects of carbon fiber electrode deformation in multifunctional structural lithium ion batteries , 2012 .

[4]  Dan Zenkert,et al.  Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries , 2012 .

[5]  A. Riahi,et al.  Characterization of Electrochemical Cycling Induced Graphite Electrode Damage in Lithium‐Ion Cells , 2011 .

[6]  Dan Zenkert,et al.  PAN-Based Carbon Fiber Negative Electrodes for Structural Lithium-Ion Batteries , 2011 .

[7]  Dan Zenkert,et al.  IMPACT OF MECHANICAL LOADING ON THEELECTROCHEMICAL BEHAVIOUR OF CARBON FIBERS FORUSE IN ENERGY STORAGE COMPOSITE , 2011 .

[8]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[9]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[10]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[11]  James F. Snyder,et al.  Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications , 2009 .

[12]  R. J. Brodd,et al.  Lithium-ion batteries : science and technologies , 2009 .

[13]  R. Kanno,et al.  Structure Characterization and Lithiation Mechanism of Nongraphitized Carbon for Lithium Secondary Batteries , 2006 .

[14]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[15]  P. Ngoepe,et al.  Structural and electronic properties of lithium intercalated graphite LiC 6 , 2003 .

[16]  D. Edie THE EFFECT OF PROCESSING ON THE STRUCTURE AND PROPERTIES , 2003 .

[17]  P. Ngoepe,et al.  Structural and electronic properties of lithium intercalated graphite , 2003 .

[18]  T. Ala‐Nissila,et al.  Mechanisms of dislocation nucleation in strained epitaxial layers , 2002, cond-mat/0308186.

[19]  Ryutaro Fukushima CARBON FIBERS , 2002 .

[20]  B. Cho,et al.  Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries , 2001 .

[21]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[22]  M. Téllez The expansion of , 1999 .

[23]  L. P. Kobets,et al.  Carbon fibres: structure and mechanical properties , 1998 .

[24]  D. Edie The effect of processing on the structure and properties of carbon fibers , 1998 .

[25]  A. Kawakami,et al.  Low-crystallized carbon materials for lithium-ion secondary batteries , 1997 .

[26]  K. Tatsumi,et al.  Anode characteristics of non-graphitizable carbon fibers for rechargeable lithium-ion batteries , 1997 .

[27]  Jeff Dahn,et al.  Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons , 1996 .

[28]  T. Yamabe,et al.  Lithium doping/undoping in disordered coke carbons , 1995 .

[29]  Michikazu Hara,et al.  Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries , 1995 .

[30]  M. Deschamps,et al.  Carbon fibres and natural graphite as negative electrodes for lithium ion-type batteries , 1994 .

[31]  L. Peebles Carbon fibres: structure and mechanical properties , 1994 .

[32]  D. J. Johnson Structure-property relationships in carbon fibres , 1987 .

[33]  A. Oberlin,et al.  Microtexture and structure of some high tensile strength, PAN-base carbon fibres , 1984 .

[34]  A. Oberlin,et al.  Microtexture and structure of some high-modulus, PAN-base carbon fibres , 1984 .

[35]  W. Reynolds,et al.  Crystal shear limit to carbon fibre strength , 1974 .