Enhanced spin thermoelectric effects in BN-embedded zigzag graphene nanoribbons

[1]  Xifeng Yang,et al.  Temperature-controlled giant thermal magnetoresistance behaviors in doped zigzag-edged silicene nanoribbons , 2014 .

[2]  Xue-Feng Wang,et al.  Large spin Seebeck effects in zigzag-edge silicene nanoribbons , 2014 .

[3]  C. Visan Thermoelectric Properties of Graphene-Boron-Nitride Nanoribbons with Transition Metal Impurities , 2014, Journal of Electronic Materials.

[4]  L. Zhou,et al.  Perfect spin filtering and large spin thermoelectric effects in organic transition-metal molecular junctions. , 2014, Physical chemistry chemical physics : PCCP.

[5]  Xiaohui Qiu,et al.  Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. , 2014, Nano letters.

[6]  X. F. Wang,et al.  Spin negative differential resistance in edge doped zigzag graphene nanoribbons , 2014, 1408.6898.

[7]  Yu-Shen Liu,et al.  Non-magnetic doping induced a high spin-filter efficiency and large spin Seebeck effect in zigzag graphene nanoribbons , 2013 .

[8]  G. A. Nemnes,et al.  Spin filtering in graphene nanoribbons with Mn-doped boron nitride inclusions , 2013 .

[9]  J. Chu,et al.  Thermal spin current through a double quantum dot molecular junction in the Coulomb blockade regime , 2013 .

[10]  Yushen Liu,et al.  Pure spin current in a double quantum dot device generated by thermal bias , 2013 .

[11]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[12]  G. Liang,et al.  Spin-dependent thermoelectric effects in graphene-based spin valves. , 2013, Nanoscale.

[13]  Yong Guo,et al.  A proposal for time-dependent pure-spin-current generators , 2012 .

[14]  H. J. Liu,et al.  Enhanced thermoelectric performance of graphene nanoribbons , 2012 .

[15]  Yongjin Jiang,et al.  Negative differential spin conductance in doped zigzag graphene nanoribbons , 2012, 1202.1839.

[16]  Massimiliano Di Ventra,et al.  Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions , 2011 .

[17]  G. Liang,et al.  Graphene-based spin caloritronics. , 2011, Nano letters.

[18]  S. Maekawa,et al.  Spin Seebeck insulator. , 2010, Nature materials.

[19]  Yushen Liu,et al.  Enhancement of thermoelectric efficiency in a double-quantum-dot molecular junction , 2010 .

[20]  D. Awschalom,et al.  Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. , 2010, Nature materials.

[21]  Á. Rubio Hybridized graphene: Nanoscale patchworks. , 2010, Nature materials.

[22]  O. Yazyev Emergence of magnetism in graphene materials and nanostructures , 2010, 1004.2034.

[23]  Yu-Shen Liu,et al.  Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions. , 2009, ACS nano.

[24]  Xiaojun Wu,et al.  Materials design of half-metallic graphene and graphene nanoribbons , 2009 .

[25]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[26]  Bing-Lin Gu,et al.  Role of symmetry in the transport properties of graphene nanoribbons under bias. , 2008, Physical review letters.

[27]  Zhenyu Li,et al.  Half-metallicity in edge-modified zigzag graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[28]  M I Katsnelson,et al.  Magnetic correlations at graphene edges: basis for novel spintronics devices. , 2007, Physical review letters.

[29]  Jinlong Yang,et al.  Will zigzag graphene nanoribbon turn to half metal under electric field , 2007, 0708.1213.

[30]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .