An improved low diffusion E-CUSP upwind scheme

An improved low diffusion E-CUSP (LDE) scheme is presented. The E-CUSP scheme can capture crisp shock profile and exact contact surface. Several numerical cases are presented to demonstrate the accuracy and robustness of the new scheme.

[1]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[2]  Gecheng Zha,et al.  Improvement of Stability and Accuracy for Weighted Essentially Nonoscillatory Scheme , 2009 .

[3]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[4]  Gecheng Zha,et al.  Calculation of transonic internal flows using an efficient high-resolution upwind scheme , 2004 .

[5]  Alexandre J. Chorin,et al.  Hairpin Removal in Vortex Interactions II , 1990 .

[6]  F. White Viscous Fluid Flow , 1974 .

[7]  Ge-Cheng Zha A low diffusion E-CUSP upwind scheme for transonic flows , 2004 .

[8]  Yiqing Shen,et al.  Generalized finite compact difference scheme for shock/complex flowfield interaction , 2011, J. Comput. Phys..

[9]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[12]  Gecheng Zha,et al.  Calculation of Transonic Flows Using WENO Method with a Low Diffusion E-CUSP Upwind Scheme , 2008 .

[13]  Meng-Sing Liou,et al.  Ten Years in the Making: AUSM-Family , 2001 .

[14]  J. Edwards A low-diffusion flux-splitting scheme for Navier-Stokes calculations , 1997 .

[15]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[16]  A. Jameson ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS DYNAMICS, 2: ARTIFICIAL DIFFUSION AND DISCRETE SHOCK STRUCTURE , 1994 .

[17]  R. Schwane,et al.  ON THE ACCURACY OF UPWIND SCHEMES FOR THE SOLUTION OF THE NAVIER-STOKES EQUATIONS , 1987 .

[18]  M. Liou A Sequel to AUSM , 1996 .

[19]  Gecheng Zha,et al.  Numerical Tests of Upwind Scheme Performance for Entropy Condition , 1999 .

[20]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[21]  M. L. Mason,et al.  The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions , 1980 .

[22]  Gecheng Zha,et al.  Numerical solutions of Euler equations by using a new flux vector splitting scheme , 1993 .

[23]  Gecheng Zha,et al.  Comparative study of upwind scheme performance for entropy condition and discontinuities , 1999 .

[24]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[25]  Gecheng Zha Low Diffusion Efficient Upwind Scheme , 2005 .

[26]  Meng-Sing Liou,et al.  An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities , 1997, SIAM J. Sci. Comput..

[27]  Gecheng Zha,et al.  Calculations of 3D compressible flows using an efficient low diffusion upwind scheme , 2005 .

[28]  A. Jameson ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS DYNAMICS, 1: ARTIFICIAL DIFFUSION, UPWIND BIASING, LIMITERS AND THEIR EFFECT ON ACCURACY AND MULTIGRID CONVERGENCE , 1995 .