Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain

[1]  C. Lim,et al.  Α γ-tubulin complex-dependent pathway suppresses ciliogenesis by promoting cilia disassembly. , 2022, Cell reports.

[2]  Georg H H Borner,et al.  Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity , 2022, Science.

[3]  W. Huttner,et al.  Primary Cilia and Centrosomes in Neocortex Development , 2021, Frontiers in Neuroscience.

[4]  F. Bradke,et al.  In Situ Visualization of Axon Growth and Growth Cone Dynamics in Acute Ex Vivo Embryonic Brain Slice Cultures. , 2021, Journal of visualized experiments : JoVE.

[5]  F. Bradke,et al.  Microtubule retrograde flow retains neuronal polarization in a fluctuating state , 2021, bioRxiv.

[6]  Brett J. Hilton,et al.  RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury , 2021, Neuron.

[7]  C. Hoogenraad,et al.  WDR47 protects neuronal microtubule minus ends from katanin-mediated severing. , 2021, Cell reports.

[8]  E. Schiebel,et al.  The gamma‐tubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator , 2021, BioEssays : news and reviews in molecular, cellular and developmental biology.

[9]  Zhen Zhang,et al.  A novel TUBG1 mutation with neurodevelopmental disorder caused by malformations of cortical development , 2021, BioMed research international.

[10]  T. Theil,et al.  The Multifaceted Roles of Primary Cilia in the Development of the Cerebral Cortex , 2021, Frontiers in Cell and Developmental Biology.

[11]  F. Francis,et al.  Neuronal migration and disorders – an update , 2020, Current Opinion in Neurobiology.

[12]  E. Schiebel,et al.  Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins. , 2020, Current opinion in cell biology.

[13]  S. Hippenmeyer,et al.  Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex , 2020, Frontiers in Cell and Developmental Biology.

[14]  Victoria Rozés-Salvador,et al.  Protocol for Evaluating Neuronal Polarity in Murine Models , 2020, STAR protocols.

[15]  H. Kiyonari,et al.  CAMSAP1 breaks the homeostatic microtubule network to instruct neuronal polarity , 2020, Proceedings of the National Academy of Sciences.

[16]  M. Zenobi‐Wong,et al.  Axon Growth of CNS Neurons in Three Dimensions Is Amoeboid and Independent of Adhesions. , 2020, Cell reports.

[17]  R. Vallee,et al.  Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo , 2020, Current Biology.

[18]  Y. Jossin Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons , 2020, Molecular and Cellular Neuroscience.

[19]  Wei Ming Lim,et al.  Microtubule Nucleation Properties of Single Human γTuRCs Explained by Their Cryo-EM Structure , 2020, Developmental cell.

[20]  Raman M. Das,et al.  Primary cilium remodeling mediates a cell signaling switch in differentiating neurons , 2020, Science Advances.

[21]  Xiumin Yan,et al.  Wdr47 Controls Neuronal Polarization through the Camsap Family Microtubule Minus-End-Binding Proteins. , 2020, Cell reports.

[22]  C. Walsh,et al.  Posterior Neocortex-Specific Regulation of Neuronal Migration by CEP85L Identifies Maternal Centriole-Dependent Activation of CDK5 , 2020, Neuron.

[23]  H. Stone,et al.  The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy , 2019, eLife.

[24]  D. Geschwind,et al.  Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury , 2019, Neuron.

[25]  C. Métin,et al.  Primary cilium-dependent cAMP/PKA signaling at the centrosome regulates neuronal migration , 2019, Science Advances.

[26]  C. Spahn,et al.  Insights into the assembly and activation of the microtubule nucleator γ-TuRC , 2019, Nature.

[27]  K. Liem,et al.  The Ciliary Protein Arl13b Functions Outside of the Primary Cilium in Shh-Mediated Axon Guidance , 2019, Cell reports.

[28]  James M. Otis,et al.  Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models. , 2019, Developmental cell.

[29]  B. Goud,et al.  The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. , 2019, Current opinion in cell biology.

[30]  Brett J. Hilton,et al.  RhoA Controls Axon Extension Independent of Specification in the Developing Brain , 2019, Current Biology.

[31]  M. Kreutz,et al.  Radial somatic F‐actin organization affects growth cone dynamics during early neuronal development , 2019, EMBO reports.

[32]  Jonathan A. Cooper,et al.  N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration , 2019, eLife.

[33]  I. Guella,et al.  Case reports: novel TUBG1 mutations with milder neurodevelopmental presentations , 2019, BMC Medical Genetics.

[34]  N. Drouot,et al.  TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis , 2019, Nature Communications.

[35]  K. Kaibuchi,et al.  Neuronal Polarity: Positive and Negative Feedback Signals , 2019, Front. Cell Dev. Biol..

[36]  Brett J. Hilton,et al.  High-resolution 3D imaging and analysis of axon regeneration in unsectioned spinal cord with or without tissue clearing , 2019, Nature Protocols.

[37]  L. Nguyen,et al.  The centrosome protein AKNA regulates neurogenesis via microtubule organization , 2019, Nature.

[38]  R. Vallee,et al.  Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation , 2019, The Journal of cell biology.

[39]  R. Goetti,et al.  Tubulinopathies , 2018, Topics in magnetic resonance imaging : TMRI.

[40]  M. Bornens,et al.  The dual role of the centrosome in organizing the microtubule network in interphase , 2018, EMBO reports.

[41]  T. Abe,et al.  CAMSAP3 maintains neuronal polarity through regulation of microtubule stability , 2018, Proceedings of the National Academy of Sciences.

[42]  Joanna C. Wolthuis,et al.  The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development , 2018, Cell Reports.

[43]  W. Dobyns,et al.  Tubulinopathies continued: refining the phenotypic spectrum associated with variants in TUBG1 , 2018, European Journal of Human Genetics.

[44]  G. Banker The Development of Neuronal Polarity: A Retrospective View , 2018, The Journal of Neuroscience.

[45]  K. Shen,et al.  Establishing Neuronal Polarity with Environmental and Intrinsic Mechanisms , 2017, Neuron.

[46]  Brett J. Hilton,et al.  Can injured adult CNS axons regenerate by recapitulating development? , 2017, Development.

[47]  F. Bradke,et al.  Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics , 2017, Molecular and Cellular Neuroscience.

[48]  Raman M. Das,et al.  Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination , 2017, eLife.

[49]  Y. Nabeshima,et al.  Morphological and Molecular Basis of Cytoplasmic Dilation and Swelling in Cortical Migrating Neurons , 2017, Brain sciences.

[50]  K. Nakajima,et al.  Reelin transiently promotes N-cadherin–dependent neuronal adhesion during mouse cortical development , 2017, Proceedings of the National Academy of Sciences.

[51]  Ariana D. Sanchez,et al.  Microtubule-organizing centers: from the centrosome to non-centrosomal sites. , 2017, Current opinion in cell biology.

[52]  Marten Postma,et al.  mScarlet: a bright monomeric red fluorescent protein for cellular imaging , 2016, Nature Methods.

[53]  C. Hoogenraad,et al.  Molecular Pathway of Microtubule Organization at the Golgi Apparatus. , 2016, Developmental cell.

[54]  Carsten Janke,et al.  The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease , 2016, Cytoskeleton.

[55]  E. Soriano,et al.  Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity , 2016, Nature Communications.

[56]  P. Duarte,et al.  A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster , 2016, Science.

[57]  A. Muroyama,et al.  Divergent regulation of functionally distinct γ-tubulin complexes during differentiation , 2016, The Journal of cell biology.

[58]  L. Pelletier,et al.  Organizational Properties of the Pericentriolar Material , 2016 .

[59]  C. Hoogenraad,et al.  TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays , 2015, Neuron.

[60]  Kazuto Hirata,et al.  Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the Centrosome of Neurons in Developing Mouse Cerebral and Cerebellar Cortex , 2015, Acta histochemica et cytochemica.

[61]  Dimitri Perrin,et al.  Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging , 2015, Nature Protocols.

[62]  T. Kawauchi Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration , 2015, Front. Cell. Neurosci..

[63]  F. Bradke,et al.  Coordinating Neuronal Actin–Microtubule Dynamics , 2015, Current Biology.

[64]  J. Bixby,et al.  Systemic administration of epothilone B promotes axon regeneration after spinal cord injury , 2015, Science.

[65]  Stephen R. Norris,et al.  Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays. , 2015, Biophysical journal.

[66]  E. Pacary,et al.  Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies , 2015, Front. Cell. Neurosci..

[67]  K. Anderson,et al.  Cortical neurogenesis in the absence of centrioles , 2014, Nature Neuroscience.

[68]  K. Nagata,et al.  Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons , 2014, Development.

[69]  R. Rios The centrosome–Golgi apparatus nexus , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[70]  E. Nigg,et al.  Centrosomes as signalling centres , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  S. Shi,et al.  SDCCAG8 Regulates Pericentriolar Material Recruitment and Neuronal Migration in the Developing Cortex , 2014, Neuron.

[72]  Eugene A. Katrukha,et al.  Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development , 2014, Neuron.

[73]  T. Miyata,et al.  Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. , 2014, Cerebral cortex.

[74]  Debbie L C van den Berg,et al.  An antagonistic interaction between PlexinB2 and Rnd3 controls RhoA activity and cortical neuron migration , 2014, Nature Communications.

[75]  K. Kaibuchi,et al.  Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex , 2014, Neuron.

[76]  Raman M. Das,et al.  Apical Abscission Alters Cell Polarity and Dismantles the Primary Cilium During Neurogenesis , 2014, Science.

[77]  L. Montoliu,et al.  Binary recombinase systems for high-resolution conditional mutagenesis , 2014, Nucleic acids research.

[78]  M. Hiller,et al.  Transcriptome sequencing during mouse brain development identifies long non‐coding RNAs functionally involved in neurogenic commitment , 2013, The EMBO journal.

[79]  T. Sapir,et al.  Microtubule dynamics in neuronal morphogenesis , 2013, Open Biology.

[80]  P. Cullen,et al.  Microtubule motors mediate endosomal sorting by maintaining functional domain organization , 2013, Journal of Cell Science.

[81]  Renzo Guerrini,et al.  Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly , 2013, Nature Genetics.

[82]  Michael W. Davidson,et al.  A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum , 2013, Nature Methods.

[83]  J. Small,et al.  ADF/Cofilin-Mediated Actin Retrograde Flow Directs Neurite Formation in the Developing Brain , 2012, Neuron.

[84]  M. Takeichi,et al.  Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules , 2012, Proceedings of the National Academy of Sciences.

[85]  S. Doxsey,et al.  The Centrosome Regulates the Rab11- Dependent Recycling Endosome Pathway at Appendages of the Mother Centriole , 2012, Current Biology.

[86]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[87]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[88]  W. Huttner,et al.  N‐cadherin specifies first asymmetry in developing neurons , 2012, The EMBO journal.

[89]  Michel Bornens,et al.  The Centrosome in Cells and Organisms , 2012, Science.

[90]  Eduarda Dráberová,et al.  γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis , 2012, PloS one.

[91]  Erik Meijering,et al.  Methods for cell and particle tracking. , 2012, Methods in enzymology.

[92]  M. Rolls,et al.  Microtubules are organized independently of the centrosome in Drosophila neurons , 2011, Neural Development.

[93]  Gaudenz Danuser,et al.  plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics. , 2011, Journal of structural biology.

[94]  J. Douglas Armstrong,et al.  Bioinformatics Applications Note Systems Biology Simple Neurite Tracer: Open Source Software for Reconstruction, Visualization and Analysis of Neuronal Processes , 2022 .

[95]  M. Bornens,et al.  Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis , 2011, The Journal of cell biology.

[96]  Emma Lundberg,et al.  Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods , 2011, The EMBO journal.

[97]  Jonathan A. Cooper,et al.  Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex , 2011, Nature Neuroscience.

[98]  Frank Bradke,et al.  Microtubule Stabilization Reduces Scarring and Causes Axon Regeneration After Spinal Cord Injury , 2011, Science.

[99]  U. Müller,et al.  Reelin Regulates Cadherin Function via Dab1/Rap1 to Control Neuronal Migration and Lamination in the Neocortex , 2011, Neuron.

[100]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[101]  C. Dai,et al.  Department of Biochemistry , 2011 .

[102]  R. Köster,et al.  The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo , 2010, The Journal of cell biology.

[103]  M. Hoshino,et al.  Rab GTPases-Dependent Endocytic Pathways Regulate Neuronal Migration and Maturation through N-Cadherin Trafficking , 2010, Neuron.

[104]  L. Tsai,et al.  Centrosome Motility Is Essential for Initial Axon Formation in the Neocortex , 2010, The Journal of Neuroscience.

[105]  K. Sanada,et al.  LKB1-Mediated Spatial Control of GSK3β and Adenomatous Polyposis Coli Contributes to Centrosomal Forward Movement and Neuronal Migration in the Developing Neocortex , 2010, The Journal of Neuroscience.

[106]  T. Haydar,et al.  Heterogeneity in Ventricular Zone Neural Precursors Contributes to Neuronal Fate Diversity in the Postnatal Neocortex , 2010, The Journal of Neuroscience.

[107]  R. Hindges,et al.  Rac1 Regulates Neuronal Polarization through the WAVE Complex , 2010, The Journal of Neuroscience.

[108]  Wei Zheng,et al.  Conserved Motif of CDK5RAP2 Mediates Its Localization to Centrosomes and the Golgi Complex* , 2010, The Journal of Biological Chemistry.

[109]  J. Risk,et al.  A Direct Interaction with NEDD1 Regulates γ-Tubulin Recruitment to the Centrosome , 2010, PloS one.

[110]  Frank Bradke,et al.  Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation , 2010, Science.

[111]  C. Hoogenraad,et al.  Microtubule dynamics in dendritic spines. , 2010, Methods in cell biology.

[112]  R. Sannerud,et al.  The function of the intermediate compartment in pre-Golgi trafficking involves its stable connection with the centrosome. , 2009, Molecular biology of the cell.

[113]  Cecilia Conde,et al.  Microtubule assembly, organization and dynamics in axons and dendrites , 2009, Nature Reviews Neuroscience.

[114]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[115]  F. Bradke,et al.  Microtubule stabilization specifies initial neuronal polarization , 2008, The Journal of cell biology.

[116]  J. B. Rattner,et al.  CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. , 2008, Molecular biology of the cell.

[117]  E. Nigg,et al.  Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion , 2007, Journal of Cell Science.

[118]  J. Bamburg,et al.  Cdc42 Regulates Cofilin during the Establishment of Neuronal Polarity , 2007, The Journal of Neuroscience.

[119]  Y. Fukada,et al.  LKB1 Regulates Neuronal Migration and Neuronal Differentiation in the Developing Neocortex through Centrosomal Positioning , 2007, The Journal of Neuroscience.

[120]  V. Vasioukhin,et al.  Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. , 2007, Developmental cell.

[121]  F. Bradke,et al.  Disorganized Microtubules Underlie the Formation of Retraction Bulbs and the Failure of Axonal Regeneration , 2007, The Journal of Neuroscience.

[122]  R. Vallee,et al.  Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue , 2007, Nature Neuroscience.

[123]  J. Sanes,et al.  LKB1 and SAD Kinases Define a Pathway Required for the Polarization of Cortical Neurons , 2007, Cell.

[124]  M. Poo,et al.  LKB1/STRAD Promotes Axon Initiation During Neuronal Polarization , 2007, Cell.

[125]  E. Anton,et al.  Nap1-Regulated Neuronal Cytoskeletal Dynamics Is Essential for the Final Differentiation of Neurons in Cerebral Cortex , 2007, Neuron.

[126]  Michael Unser,et al.  User‐friendly semiautomated assembly of accurate image mosaics in microscopy , 2007, Microscopy research and technique.

[127]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[128]  W. Harris,et al.  Polarization and orientation of retinal ganglion cells in vivo , 2006, Neural Development.

[129]  J. Raff,et al.  Flies without Centrioles , 2006, Cell.

[130]  A. Merdes,et al.  NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly , 2006, The Journal of cell biology.

[131]  T. Stearns,et al.  GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation , 2006, Nature Cell Biology.

[132]  A. Kriegstein,et al.  LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages , 2005, The Journal of cell biology.

[133]  Carlos G. Dotti,et al.  Centrosome localization determines neuronal polarity , 2005, Nature.

[134]  M. Bornens,et al.  Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function , 2005, Journal of Cell Science.

[135]  L. Tsai,et al.  Ndel1 Operates in a Common Pathway with LIS1 and Cytoplasmic Dynein to Regulate Cortical Neuronal Positioning , 2004, Neuron.

[136]  A. Wynshaw-Boris,et al.  Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration , 2004, The Journal of cell biology.

[137]  K. Kaibuchi,et al.  PIP3 is involved in neuronal polarization and axon formation , 2004, Journal of neurochemistry.

[138]  U Serdar Tulu,et al.  Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Y. Jan,et al.  Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity , 2003, Cell.

[140]  F. Perez,et al.  The Golgi complex is a microtubule-organizing organelle. , 2001, Molecular biology of the cell.

[141]  S. Munro,et al.  The PACT domain, a conserved centrosomal targeting motif in the coiled‐coil proteins AKAP450 and pericentrin , 2000, EMBO reports.

[142]  A. Gloster,et al.  Early induction of Tα1 α‐tubulin transcription in neurons of the developing nervous system , 1999 .

[143]  P. Baas Microtubules and Neuronal Polarity Lessons from Mitosis , 1999, Neuron.

[144]  J. Zmuda,et al.  The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. , 1998, Cell motility and the cytoskeleton.

[145]  T. Stearns,et al.  Synaptically coupled central nervous system neurons lack centrosomal γ-tubulin , 1997, Neuroscience Letters.

[146]  M. Bornens,et al.  gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. , 1996, Journal of cell science.

[147]  A. Gloster,et al.  The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[148]  H. Joshi,et al.  Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth , 1994, Neuron.

[149]  Clayton S. Smith Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[150]  V. Centonze,et al.  Microtubule nucleation and release from the neuronal centrosome , 1993, The Journal of cell biology.