Graphical readings of possibilistic logic bases

Possibility theory offers either a qualitative, or a numerical framework for representing uncertainty, in terms of dual measures of possibility and necessity. This leads to the existence of two kinds of possibilistic causal graphs where the conditioning is either based on the minimum, or on the product operator. Benferhat et al. [3] have investigated the connections between min-based graphs and possibilistic logic bases (made of classical formulas weighted in terms of certainty). This paper deals with a more difficult issue: the product-based graphical representation of possibilistic bases, which provides an easy structural reading of possibilistic bases.

[1]  Pascale Fonck Conditional Independence in Possibility Theory , 1994, UAI.

[2]  Hector Geffner,et al.  Independence in qualitative uncertainty frameworks , 2000, KR.

[3]  David Poole,et al.  Logic, Knowledge Representation, and Bayesian Decision Theory , 2000, Computational Logic.

[4]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[5]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[6]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[7]  H. Prade,et al.  Possibilistic logic , 1994 .

[8]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[9]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[10]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[11]  Jürg Kohlas,et al.  Propositional Information Systems , 1999, J. Log. Comput..

[12]  Didier Dubois,et al.  Directed possibilistic graphs and possibilistic logic , 2000 .

[13]  Moisfis Goldszmidt Belief-Based Irrelevance and Networks: Toward Faster Algorithms for Prediction* , 1994 .

[14]  Didier Dubois,et al.  Possibilistic logic bases and possibilistic graphs , 1999, UAI.

[15]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[16]  P. Smets La théorie des possibilités quantitatives épistémiques vue comme un modèle de croyances transférables très prudent . Quantified Epistemic Possibilty Theory seens as an Hyper Cautious Transferable Belief Model , 2000 .

[17]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[18]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[19]  Peter Walley,et al.  STATISTICAL INFERENCES BASED ON A SECOND-ORDER POSSIBILITY DISTRIBUTION , 1997 .

[20]  Didier Dubois,et al.  New Semantics for Quantitative Possibility Theory , 2001, ECSQARU.