Thiolated amphiphilic β-cyclodextrin-decorated gold colloids: Synthesis, supramolecular nanoassemblies and controlled release of dopamine

[1]  Raluca M. Fratila,et al.  Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications , 2021, Nanoscale advances.

[2]  M. Brucale,et al.  A plasmon-based nanoruler to probe the mechanical properties of synthetic and biogenic nanosized lipid vesicles. , 2020, Nanoscale horizons.

[3]  J. M. Benito,et al.  Cyclodextrin-Based Functional Glyconanomaterials , 2020, Nanomaterials.

[4]  B. Braunschweig,et al.  A cyclodextrin surfactant for stable emulsions with an accessible cavity for host-guest complexation. , 2020, Chemical communications.

[5]  F. Biscarini,et al.  Amphiphilic cationic cyclodextrin nanovesicles: a versatile cue for guiding cell adhesion , 2020, Nanoscale advances.

[6]  Ana I. Carbajo‐Gordillo,et al.  Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. , 2020, Chemistry.

[7]  M. Mas‐Torrent,et al.  Cyclodextrin-based superparamagnetic host vesicles as ultrasensitive nanobiocarriers for electrosensing. , 2020, Nanoscale.

[8]  A. Pandit,et al.  Recent Advances in Host–Guest Self‐Assembled Cyclodextrin Carriers: Implications for Responsive Drug Delivery and Biomedical Engineering , 2020, Advanced Functional Materials.

[9]  Umakanta Tripathy,et al.  Spectroscopic insight into the interaction of dopamine with spherical gold nanoparticles. , 2019, Journal of photochemistry and photobiology. B, Biology.

[10]  A. Mazzaglia,et al.  Bio-soft cyclodextrin nanomaterials , 2019 .

[11]  Asier Unciti-Broceta,et al.  Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis , 2019, Nature Catalysis.

[12]  Hans van Gorp,et al.  One‐Step Covalent Immobilization of β‐Cyclodextrin on sp2 Carbon Surfaces for Selective Trace Amount Probing of Guests , 2019, Advanced Functional Materials.

[13]  A. Scala,et al.  Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics. , 2019, Biomacromolecules.

[14]  A. Studer,et al.  Photochemical preparation of gold nanoparticle decorated cyclodextrin vesicles with tailored plasmonic properties. , 2019, Nanoscale.

[15]  O. Rascol,et al.  Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs , 2018, Nature Reviews Drug Discovery.

[16]  P. Mohanan,et al.  Interaction of nanoparticles with central nervous system and its consequences , 2018 .

[17]  Yitao Wang,et al.  Dual-functional Brij-S20-modified nanocrystal formulation enhances the intestinal transport and oral bioavailability of berberine , 2018, International journal of nanomedicine.

[18]  H. Pérez‐Sánchez,et al.  Investigation of 3D Contour Map and Intermolecular Interaction of Dopamine with β-Cyclodextrin and 2-Hydroxypropyl-β-cyclodextrin , 2018, Journal of Solution Chemistry.

[19]  Marjan Ghorbani,et al.  Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent. , 2017, Materials science & engineering. C, Materials for biological applications.

[20]  C. Chu,et al.  Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host-guest interaction. , 2017, Chemical communications.

[21]  J. M. Benito,et al.  Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery , 2017, Beilstein journal of nanotechnology.

[22]  S. Yao,et al.  Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs , 2017 .

[23]  P. Stoddart,et al.  Gold Nanoparticles for Modulating Neuronal Behavior , 2017, Nanomaterials.

[24]  Yanli Zhou,et al.  Simultaneous determination of dopamine and ascorbic acid using β-cyclodextrin/Au nanoparticles/graphene-modified electrodes , 2017 .

[25]  V. Brunella,et al.  Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease , 2016, Expert opinion on drug delivery.

[26]  F. Ungaro,et al.  Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: Design, physicochemical properties and intracellular effects. , 2016, Colloids and surfaces. B, Biointerfaces.

[27]  S. Lesieur,et al.  Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. , 2016, Soft matter.

[28]  Raquel Ferreira,et al.  Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[29]  M. Roy,et al.  Exploration of inclusion complexes of neurotransmitters with β-cyclodextrin by physicochemical techniques , 2016 .

[30]  Frank Simon,et al.  Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. , 2016, Small.

[31]  Po-Da Hong,et al.  Facile synthesis of hexagonal-shaped polypyrrole self-assembled particles for the electrochemical detection of dopamine , 2016 .

[32]  F. Biscarini,et al.  Electrical release of dopamine and levodopa mediated by amphiphilic β-cyclodextrins immobilized on polycrystalline gold. , 2015, Nanoscale.

[33]  A. Scala,et al.  Nanoassemblies Based on Supramolecular Complexes of Nonionic Amphiphilic Cyclodextrin and Sorafenib as Effective Weapons to Kill Human HCC Cells. , 2015, Biomacromolecules.

[34]  Y. Xu,et al.  Visualizing dopamine released from living cells using a nanoplasmonic probe. , 2015, Nanoscale.

[35]  Rajendra Kumar Shukla,et al.  Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. , 2015, ACS nano.

[36]  Paolo Bergese,et al.  Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. , 2015, Analytical chemistry.

[37]  T. Parisi,et al.  Supramolecular hybrid assemblies based on gold nanoparticles, amphiphilic cyclodextrin and porphyrins with combined phototherapeutic action , 2013 .

[38]  V. Villari,et al.  Nanostructures of cationic amphiphilic cyclodextrin complexes with DNA. , 2013, Biomacromolecules.

[39]  M. Grzelczak,et al.  Colloidal nanoplasmonics: from building blocks to sensing devices. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[40]  R. Franco,et al.  Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. , 2012, Antioxidants & redox signaling.

[41]  S. Guha,et al.  Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles , 2012, Analytical and Bioanalytical Chemistry.

[42]  J. M. Benito,et al.  Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. , 2011, Biomaterials.

[43]  Abolhassan Noori,et al.  A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. , 2011, Biosensors & bioelectronics.

[44]  V. Villari,et al.  Effective cell uptake of nanoassemblies of a fluorescent amphiphilic cyclodextrin and an anionic porphyrin. , 2011, Chemical communications.

[45]  Yu Zhang,et al.  Simultaneous voltammetric determination for DA, AA and NO₂⁻ based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. , 2011, Biosensors & bioelectronics.

[46]  Zhong Zuo,et al.  Intestinal transport of bis(12)‐hupyridone in Caco‐2 cells and its improved permeability by the surfactant Brij‐35 , 2011, Biopharmaceutics & drug disposition.

[47]  G. Ingo,et al.  Supramolecular Colloidal Systems of Gold Nanoparticles/Amphiphilic Cyclodextrin: a FE-SEM and XPS Investigation of Nanostructures Assembled onto Solid Surface , 2009 .

[48]  J. Rochet,et al.  Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson's disease-related insults. , 2008, Free radical biology & medicine.

[49]  S. Patané,et al.  Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy , 2008 .

[50]  S. Bazzano,et al.  Effect of delay time and grid voltage changes on the average molecular mass of polydisperse polymers and polymeric blends determined by delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.

[51]  Uwe Karst,et al.  Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules. , 2005, Chemistry.

[52]  A. Mazzaglia,et al.  Novel Amphiphilic Cyclodextrins: Graft‐Synthesis of Heptakis(6‐alkylthio‐6‐deoxy)‐β‐cyclodextrin 2‐Oligo(ethylene glycol) Conjugates and Their ω‐Halo Derivatives , 2001 .

[53]  R. Darcy,et al.  Cyclodextrin Bilayer Vesicles. , 2000, Angewandte Chemie.

[54]  Vitalini,et al.  Effect of combined changes in delayed extraction time and potential gradient on the mass resolution and ion discrimination in the analysis of polydisperse polymers and polymer blends by delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry , 1999, Rapid communications in mass spectrometry : RCM.

[55]  A. Kaifer,et al.  In situ modification of the surface of gold colloidal particles. Preparation of cyclodextrin-based rotaxanes supported on gold nanospheres , 1998 .

[56]  Guobao Xu,et al.  One-pot green synthesis of supramolecular β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine , 2018 .

[57]  Haoshen Zhou,et al.  CONFORMATIONAL CHANGE OF PROTEIN CYTOCHROME B-562 ADSORBED ON COLLOIDAL GOLD PARTICLES; ABSORPTION BAND SHIFT , 1997 .

[58]  R. Darcy,et al.  Cyclodextrin liquid crystals: synthesis and self-organisation of amphiphilic thio-β-cyclodextrins , 1993 .

[59]  J. Defaye,et al.  Selective Halogenation at Primary Positions of Cyclomaltooligosaccharides and a Synthesis of Per‐3,6‐anhydro Cyclomaltooligosaccharides , 1991 .