Type-2 Fuzzy Sets for Pattern Classification: A Review

This paper reviews the advances of type-2 fuzzy sets for pattern classification. The recent success of type-2 fuzzy sets has been largely attributed to their three-dimensional membership functions to handle more uncertainties in real-world problems. In pattern classification, both feature and hypothesis spaces have uncertainties, which motivate us of integrating type-2 fuzzy sets with traditional classifiers to achieve a better performance in terms of robustness, generalization ability, or classification rates. We describe recent type-2 fuzzy classifiers, from which we summarize a systematic approach to solve pattern classification problems. Finally, we discuss the trade-off between complexity and performance when using type-2 fuzzy classifiers, and explain the current difficulty of applying type-2 fuzzy sets to pattern classification

[1]  George J. Klir,et al.  Uncertainty-Based Information , 1999 .

[2]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[3]  H. B. Mitchell Ranking type-2 fuzzy numbers , 2006, IEEE Transactions on Fuzzy Systems.

[4]  Jia Zeng,et al.  Type-2 Fuzzy Markov Random Fields and Their Application to Handwritten Chinese Character Recognition , 2008, IEEE Transactions on Fuzzy Systems.

[5]  Jia Zeng,et al.  Type-2 fuzzy hidden Markov models to phoneme recognition , 2004, ICPR 2004.

[6]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[7]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[8]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[9]  James J. Buckley,et al.  Fuzzy Probabilities : New Approach and Applications , 2005 .

[10]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[11]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[12]  Jia Zeng,et al.  Type-2 fuzzy hidden Markov models and their application to speech recognition , 2006, IEEE Transactions on Fuzzy Systems.

[13]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[14]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[15]  George C. Mouzouris,et al.  Nonsingleton fuzzy logic systems: theory and application , 1997, IEEE Trans. Fuzzy Syst..

[16]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[17]  Jerry M. Mendel,et al.  Classification of Battlefield Ground Vehicles Using Acoustic Features and Fuzzy Logic Rule-Based Classifiers , 2007, IEEE Transactions on Fuzzy Systems.

[18]  Jia Zeng,et al.  Type-2 fuzzy hidden Markov models to phoneme recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[19]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[20]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[21]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[22]  M. Mizumoto,et al.  Fuzzy sets and type 2 under algebraic product and algebraic sum , 1981 .

[23]  M. Beer,et al.  Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics , 2004 .

[24]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[25]  Lei Xie,et al.  Gaussian Mixture Models with Uncertain Parameters , 2007, 2007 International Conference on Machine Learning and Cybernetics.

[26]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[27]  Yian-Kui Liu,et al.  Fuzzy Possibility Space and Type-2 Fuzzy Variable , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[28]  Jia Zeng,et al.  Stroke Segmentation of Chinese Characters Using Markov Random Fields , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[29]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[30]  Jerry M. Mendel,et al.  MPEG VBR video traffic modeling and classification using fuzzy technique , 2001, IEEE Trans. Fuzzy Syst..

[31]  H. B. Mitchell Pattern recognition using type-II fuzzy sets , 2005, Inf. Sci..

[32]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[33]  Robert Ivor John,et al.  Neuro-fuzzy clustering of radiographic tibia image data using type 2 fuzzy sets , 2000, Inf. Sci..

[34]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[35]  Jia Zeng,et al.  Type-2 Fuzzy Sets for Handling Uncertainty in Pattern Recognition , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[36]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[37]  Jia Zeng Type-2 fuzzy sets, Markov processes for pattern recognition , 2006 .

[38]  Jia Zeng,et al.  Interval type-2 fuzzy hidden Markov models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[39]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[40]  Jia Zeng,et al.  Type-2 Fuzzy Markov Random Fields to Handwritten Character Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).