Tip-enhanced Raman spectroscopy - from early developments to recent advances.

An analytical technique operating at the nanoscale must be flexible regarding variable experimental conditions while ideally also being highly specific, extremely sensitive, and spatially confined. In this respect, tip-enhanced Raman scattering (TERS) has been demonstrated to be ideally suited to, e.g., elucidating chemical reaction mechanisms, determining the distribution of components and identifying and localizing specific molecular structures at the nanometre scale. TERS combines the specificity of Raman spectroscopy with the high spatial resolution of scanning probe microscopies by utilizing plasmonic nanostructures to confine the incident electromagnetic field and increase it by many orders of magnitude. Consequently, molecular structure information in the optical near field that is inaccessible to other optical microscopy methods can be obtained. In this general review, the development of this still-young technique, from early experiments to recent achievements concerning inorganic, organic, and biological materials, is addressed. Accordingly, the technical developments necessary for stable and reliable AFM- and STM-based TERS experiments, together with the specific properties of the instruments under different conditions, are reviewed. The review also highlights selected experiments illustrating the capabilities of this emerging technique, the number of users of which has steadily increased since its inception in 2000. Finally, an assessment of the frontiers and new concepts of TERS, which aim towards rendering it a general and widely applicable technique that combines the highest possible lateral resolution and extreme sensitivity, is provided.

[1]  Yan Yan,et al.  Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz) , 2018, Front. Physiol..

[2]  G. Schatz,et al.  Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. , 2017, Chemical reviews.

[3]  D. Spitzer,et al.  High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  J. Loos,et al.  Etchant-based design of gold tip apexes for plasmon-enhanced Raman spectromicroscopy. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  George C Schatz,et al.  Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. , 2017, Nano letters.

[6]  J. Dellith,et al.  A classical description of subnanometer resolution by atomic features in metallic structures. , 2017, Nanoscale.

[7]  Volker Deckert,et al.  High resolution spectroscopy reveals fibrillation inhibition pathways of insulin , 2016, Scientific Reports.

[8]  D. Zahn,et al.  Mechanical properties and applications of custom-built gold AFM cantilevers , 2016 .

[9]  Sang‐Hyun Oh,et al.  Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing , 2016, Nano letters.

[10]  Volker Deckert,et al.  Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies , 2016, Analytical chemistry.

[11]  M. Scully,et al.  Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy , 2016 .

[12]  Martin A. B. Hedegaard,et al.  Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils , 2016, Scientific Reports.

[13]  H. Lohninger,et al.  Tip-Enhanced Raman Spectroscopy of Atmospherically Relevant Aerosol Nanoparticles. , 2016, Analytical chemistry.

[14]  I. Notingher,et al.  In-situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis , 2016 .

[15]  M. Bonn,et al.  Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. , 2016, The journal of physical chemistry. B.

[16]  A. Vecchione,et al.  Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes , 2016, Scientific Reports.

[17]  Tyler J. Dill,et al.  Colloidal Nanoantennas for Hyperspectral Chemical Mapping. , 2016, ACS nano.

[18]  R. Ossikovski,et al.  Molecular Bending at the Nanoscale Evidenced by Tip-Enhanced Raman Spectroscopy in Tunneling Mode on Thiol Self-Assembled Monolayers , 2016 .

[19]  Y. Saito,et al.  Control of near-field polarizations for nanoscale molecular orientational imaging , 2016 .

[20]  R. Zenobi,et al.  Preparation of Well-Defined DNA Samples for Reproducible Nanospectroscopic Measurements. , 2016, Small.

[21]  A. Jorio,et al.  Raman Studies of Carbon Nanostructures , 2016 .

[22]  Katrin F. Domke,et al.  Versatile Side-Illumination Geometry for Tip-Enhanced Raman Spectroscopy at Solid/Liquid Interfaces. , 2016, Analytical chemistry.

[23]  Rui Zhang,et al.  Tip-Enhanced Raman Spectroscopic Imaging of Individual Carbon Nanotubes with Subnanometer Resolution. , 2016, Nano letters.

[24]  Yukihiro Ozaki,et al.  Nanoscale pH Profile at a Solution/Solid Interface by Chemically Modified Tip-Enhanced Raman Scattering , 2016 .

[25]  N. Dai,et al.  Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. , 2016, Chemical communications.

[26]  I. Lucas,et al.  Tip enhanced Raman spectroscopy imaging of opaque samples in organic liquid. , 2016, Physical chemistry chemical physics : PCCP.

[27]  F. Schreiber,et al.  Revealing nanoscale optical properties and morphology in perfluoropentacene films by confocal and tip-enhanced near-field optical microscopy and spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[28]  Yasuhiko Fujita,et al.  Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire , 2016 .

[29]  Y. Lyubchenko,et al.  Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies. , 2016, Ultramicroscopy.

[30]  Zachary D. Schultz,et al.  Selective Detection of RGD-Integrin Binding in Cancer Cells Using Tip Enhanced Raman Scattering Microscopy. , 2016, Analytical chemistry.

[31]  M. Scully,et al.  Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging , 2016, Scientific Reports.

[32]  Fabiana A. Caetano,et al.  Tip-enhanced Raman spectroscopy: plasmid-free vs. plasmid-embedded DNA. , 2016, The Analyst.

[33]  M. Wasielewski,et al.  Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. , 2016, Nano letters.

[34]  Thomas Bocklitz,et al.  Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect. , 2016, Nanoscale.

[35]  B. Weckhuysen,et al.  Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. , 2016, Physical chemistry chemical physics : PCCP.

[36]  Jian-feng Li,et al.  Chemical Production of Thin Protective Coatings on Optical Nanotips for Tip-Enhanced Raman Spectroscopy , 2016 .

[37]  M. Siegmann,et al.  Direct Base-to-Base Transitions in ssDNA Revealed by Tip-Enhanced Raman Scattering , 2016, 1604.06598.

[38]  A. Saito,et al.  Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy , 2016 .

[39]  J. Köhler,et al.  High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis , 2016, Analytical and Bioanalytical Chemistry.

[40]  Mengtao Sun,et al.  High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. , 2016, The Review of scientific instruments.

[41]  Y. Saito,et al.  Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. , 2016, Nanoscale.

[42]  R. Goodacre,et al.  Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering. , 2016, Analytical chemistry.

[43]  Zhilin Yang,et al.  A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy , 2016, Scientific Reports.

[44]  Joon Won Park,et al.  Nanostar probes for tip-enhanced spectroscopy. , 2016, Nanoscale.

[45]  R. Zenobi,et al.  Toward an Effective Control of DNA's Submolecular Conformation on a Surface , 2016 .

[46]  De‐Yin Wu,et al.  Revealing Intermolecular Interaction and Surface Restructuring of an Aromatic Thiol Assembling on Au(111) by Tip-Enhanced Raman Spectroscopy. , 2016, Analytical chemistry.

[47]  Austin C. Faucett,et al.  Nanoscale reduction of graphene oxide under ambient conditions , 2015 .

[48]  Richard P Van Duyne,et al.  Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy. , 2015, Nano letters.

[49]  Naresh Kumar,et al.  Probing individual point defects in graphene via near-field Raman scattering. , 2015, Nanoscale.

[50]  Teng-Xiang Huang,et al.  Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. , 2015, Nanoscale.

[51]  Satoshi Kawata,et al.  Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. , 2015, Nanoscale.

[52]  R. V. Van Duyne,et al.  Plasmon-Mediated Electron Transport in Tip-Enhanced Raman Spectroscopic Junctions. , 2015, The journal of physical chemistry letters.

[53]  Jinlong Yang,et al.  Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. , 2015, Nature nanotechnology.

[54]  M. Salakhov,et al.  Electrochemical design of plasmonic nanoantennas for tip-enhanced optical spectroscopy and imaging performance , 2015 .

[55]  V. A. Apkarian,et al.  Isomerization of One Molecule Observed through Tip-Enhanced Raman Spectroscopy. , 2015, Nano letters.

[56]  De‐Yin Wu,et al.  Electrochemical Tip-Enhanced Raman Spectroscopy. , 2015, Journal of the American Chemical Society.

[57]  M. Bonn,et al.  Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy. , 2015, Small.

[58]  R. Zenobi,et al.  Degradation of silver near-field optical probes and its electrochemical reversal , 2015 .

[59]  Sheng-Chao Huang,et al.  Tip-enhanced Raman spectroscopy: tip-related issues , 2015, Analytical and Bioanalytical Chemistry.

[60]  Giovanni Fanchini,et al.  Tip-enhanced Raman spectroscopy of graphene-like and graphitic platelets on ultraflat gold nanoplates. , 2015, Physical chemistry chemical physics : PCCP.

[61]  S. Coussan,et al.  Vibrational modes of aminothiophenol: a TERS and DFT study. , 2015, Physical chemistry chemical physics : PCCP.

[62]  W. Xie,et al.  Hot electron-induced reduction of small molecules on photorecycling metal surfaces , 2015, Nature Communications.

[63]  R. Zenobi,et al.  Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions , 2015, Analytical and Bioanalytical Chemistry.

[64]  V. Deckert,et al.  Label-free monitoring of plasmonic catalysis on the nanoscale. , 2015, The Analyst.

[65]  D. Kern,et al.  Fabrication of a plasmonic nanocone on top of an AFM cantilever , 2015 .

[66]  Volker Deckert,et al.  Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles. , 2015, Nanoscale.

[67]  A. Kornyshev,et al.  Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. , 2015, Faraday discussions.

[68]  Dhabih V. Chulhai,et al.  Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy. , 2015, Nano letters.

[69]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[70]  V. Deckert,et al.  Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip‐enhanced Raman spectroscopy , 2015, Electrophoresis.

[71]  M. Zeisberger,et al.  Spatial resolution in Raman spectroscopy. , 2015, Faraday discussions.

[72]  R. Zenobi,et al.  Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. , 2015, Nanoscale.

[73]  A. N. Vamivakas,et al.  Tip-enhanced Raman mapping of local strain in graphene , 2015, Nanotechnology.

[74]  R. Zenobi,et al.  Minimally invasive characterization of covalent monolayer sheets using tip-enhanced Raman spectroscopy. , 2015, ACS nano.

[75]  Jianing Chen,et al.  Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy , 2015, Scientific Reports.

[76]  J. Popp,et al.  A manual and an automatic TERS based virus discrimination. , 2015, Nanoscale.

[77]  Satoshi Kawata,et al.  Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging , 2015 .

[78]  B. Weckhuysen,et al.  Differences in single and aggregated nanoparticle plasmon spectroscopy. , 2015, Physical chemistry chemical physics : PCCP.

[79]  Zachary D. Schultz,et al.  TERS detection of αVβ3 integrins in intact cell membranes. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[80]  R. Isticato,et al.  Nanoscale chemical imaging of Bacillus subtilis spores by combining tip-enhanced Raman scattering and advanced statistical tools. , 2014, ACS nano.

[81]  Yukihiro Ozaki,et al.  Tip-Enhanced Raman Scattering of the Local Nanostructure of Epitaxial Graphene Grown on 4H-SiC (0001̅) , 2014 .

[82]  Y. Saito,et al.  Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole. , 2014, ACS nano.

[83]  V. Deckert,et al.  Local protonation control using plasmonic activation. , 2014, Chemical communications.

[84]  Naihao Chiang,et al.  Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy with Picosecond Excitation. , 2014, The journal of physical chemistry letters.

[85]  Hongxing Xu,et al.  Plasmon‐Driven Selective Reductions Revealed by Tip‐Enhanced Raman Spectroscopy , 2014 .

[86]  V. Deckert,et al.  A Modified Transmission Tip-Enhanced Raman Scattering (TERS) Setup Provides Access to Opaque Samples , 2014, Applied spectroscopy.

[87]  H. Uji‐i,et al.  A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering. , 2014, Chemical communications.

[88]  Y. Fujita,et al.  Nano-scale characterization of binary self-assembled monolayers under an ambient condition with STM and TERS. , 2014, Chemical communications.

[89]  V. Deckert,et al.  Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization , 2014, Analytical and Bioanalytical Chemistry.

[90]  Tobias J Kippenberg,et al.  Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. , 2014, Nature nanotechnology.

[91]  Satoshi Kawata,et al.  3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. , 2014, Methods.

[92]  S. Kawata,et al.  Indium for Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering , 2014 .

[93]  Yi Luo,et al.  Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution. , 2014, Journal of the American Chemical Society.

[94]  Hongxing Xu,et al.  Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors. , 2014, Nanoscale.

[95]  De‐Yin Wu,et al.  Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds. , 2014, The journal of physical chemistry letters.

[96]  M. Chaigneau,et al.  Billion-fold increase in tip-enhanced Raman signal. , 2014, ACS nano.

[97]  M. Mochizuki,et al.  Light-transmittable Ultrasmooth Gold Film for Gap-mode Tip-enhanced Raman Scattering Spectroscopy , 2014 .

[98]  Dhabih V. Chulhai,et al.  Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. , 2014, Journal of the American Chemical Society.

[99]  S. Kawata,et al.  A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient , 2014, Nature Communications.

[100]  M. Chaigneau,et al.  Exchange of methyl- and azobenzene-terminated alkanethiols on polycrystalline gold studied by tip-enhanced Raman mapping. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[101]  Hongxing Xu,et al.  High-vacuum tip enhanced Raman spectroscopy , 2014 .

[102]  W. Norimatsu,et al.  Epitaxial graphene on SiC{0001}: advances and perspectives. , 2014, Physical chemistry chemical physics : PCCP.

[103]  R. V. Van Duyne,et al.  Molecular plasmonics for nanoscale spectroscopy. , 2014, Chemical Society reviews.

[104]  P. Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[105]  Sabine Szunerits,et al.  Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles , 2014 .

[106]  Jakub Bielecki,et al.  Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. , 2014, Angewandte Chemie.

[107]  Matthew D Sonntag,et al.  Tip-Enhanced Raman Spectroscopy with Picosecond Pulses. , 2014, The journal of physical chemistry letters.

[108]  Satoshi Kawata,et al.  Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. , 2013, Physical review letters.

[109]  T. Komeda,et al.  Tip-enhanced Raman spectroscopy of 4,4′-bipyridine and 4,4′-bipyridine N,N'-dioxide adsorbed on gold thin films , 2013 .

[110]  E. Cherubini,et al.  Preliminary results on an innovative plasmonic device for macromolecules analysis and sequencing , 2013 .

[111]  Dhabih V. Chulhai,et al.  The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. , 2013, Journal of the American Chemical Society.

[112]  Hongxing Xu,et al.  Plasmonic scissors for molecular design. , 2013, Chemistry.

[113]  F. Lagugné-Labarthet,et al.  Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. , 2013, Optics express.

[114]  Satoshi Kawata,et al.  Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes , 2013, Nature Communications.

[115]  Lijia Liu,et al.  Tip-Enhanced Raman Imaging and Nano Spectroscopy of Etched Silicon Nanowires , 2013, Sensors.

[116]  Y. Fujita,et al.  Bias voltage-dependent STM−tip-enhanced Raman spectroscopy of benzenethiol-modified gold nanoplates , 2013 .

[117]  Masanori Fujinami,et al.  Tip-enhanced Raman Spectroscopy of Lipid Bilayers in Water with an Alumina- and Silver-coated Tungsten Tip , 2013, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[118]  Seunghun Hong,et al.  Multilayered nano-prism vertex tips for tip-enhanced Raman spectroscopy and imaging. , 2013, The Analyst.

[119]  Weitao Su,et al.  Visualizing graphene edges using tip-enhanced Raman spectroscopy , 2013 .

[120]  M. R. Wagner,et al.  Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering. , 2013, Nano letters.

[121]  M. Workentin,et al.  Tip-Enhanced Raman Spectroscopy of Self-Assembled Thiolated Monolayers on Flat Gold Nanoplates Using Gaussian-Transverse and Radially Polarized Excitations , 2013 .

[122]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[123]  Hongxing Xu,et al.  Tip‐Enhanced Resonance Couplings Revealed by High Vacuum Tip‐Enhanced Raman Spectroscopy , 2013 .

[124]  Hongxing Xu,et al.  Tip-Enhanced Ultrasensitive Stokes and Anti-Stokes Raman Spectroscopy in High Vacuum , 2013, Plasmonics.

[125]  Prashant Nagpal,et al.  Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture , 2013, Scientific Reports.

[126]  Hao Wang,et al.  The chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticles. , 2013, The Analyst.

[127]  Rebecca L. Agapov,et al.  Protecting TERS probes from degradation: extending mechanical and chemical stability , 2013 .

[128]  M. Bonn,et al.  Amyloids: From molecular structure to mechanical properties , 2013 .

[129]  Zhendong Zhu,et al.  Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy , 2013 .

[130]  G. Stucky,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[131]  Hongxing Xu,et al.  Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. , 2013, Nanoscale.

[132]  I. Lednev,et al.  Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. , 2013, The Analyst.

[133]  Renato Zenobi,et al.  Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy , 2013 .

[134]  I. Lednev,et al.  Structural Characterization of Insulin Fibril Surfaces using Tip Enhanced Raman Spectroscopy (TERS) , 2013 .

[135]  R. Zenobi,et al.  Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. , 2013, ACS nano.

[136]  Y. Ozaki,et al.  Tip-Enhanced Raman Spectroscopy Study of Local Interactions at the Interface of Styrene–Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites , 2013 .

[137]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[138]  D. Zahn,et al.  Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy. , 2012, The Review of scientific instruments.

[139]  Zhi-Feng Huang Scale-coupling and interface-pinning effects in the phase-field-crystal model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  Yi Zhang,et al.  Constant current etching of gold tips suitable for tip-enhanced Raman spectroscopy. , 2012, The Review of scientific instruments.

[141]  R. Zenobi,et al.  Missing Amide I Mode in Gap-Mode Tip-Enhanced Raman Spectra of Proteins , 2012 .

[142]  Honghong Chen,et al.  Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy. , 2012, Journal of the American Chemical Society.

[143]  Zachary J. Lapin,et al.  Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. , 2012, ACS nano.

[144]  P. Nordlander,et al.  Tunable plasmon resonances in a metallic nanotip-film system. , 2012, Nanoscale.

[145]  Hairong Zheng,et al.  In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy , 2012, Scientific Reports.

[146]  B. Weckhuysen,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[147]  S. Kawata,et al.  Highly reproducible tip‐enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone , 2012 .

[148]  S. Kawata,et al.  Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures , 2012 .

[149]  Volker Deckert,et al.  Structure and composition of insulin fibril surfaces probed by TERS. , 2012, Journal of the American Chemical Society.

[150]  Volker Deckert,et al.  Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. , 2012, Biochemical Society transactions.

[151]  Y. Ozaki,et al.  Micrometer-sized gold nanoplates: starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). , 2012, Physical chemistry chemical physics : PCCP.

[152]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in two-dimensional systems , 2012 .

[153]  E. Di Fabrizio,et al.  Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes , 2012, Plasmonics.

[154]  C. Nauenheim,et al.  Note: tip enhanced Raman spectroscopy with objective scanner on opaque samples. , 2012, The Review of scientific instruments.

[155]  J. Michler,et al.  Synthesis and attachment of silver nanowires on atomic force microscopy cantilevers for tip-enhanced Raman spectroscopy , 2012 .

[156]  Michael J. Gordon,et al.  Near-field artifacts in tip-enhanced Raman spectroscopy , 2012 .

[157]  S. Kawata,et al.  Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source† , 2012 .

[158]  Y. Saito,et al.  Fabrication of Near-Field Plasmonic Tip by Photoreduction for Strong Enhancement in Tip-Enhanced Raman Spectroscopy , 2012 .

[159]  F. Theil,et al.  Surface-enhanced Raman spectroscopy (SERS): progress and trends , 2012, Analytical and Bioanalytical Chemistry.

[160]  Volker Deckert,et al.  Tracking of nanoscale structural variations on a single amyloid fibril with tip‐enhanced Raman scattering , 2012, Journal of biophotonics.

[161]  B. Wood,et al.  Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering. , 2012, Nano letters.

[162]  B. Wood,et al.  Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield , 2012 .

[163]  Y. Ekinci,et al.  Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. , 2012, Journal of the American Chemical Society.

[164]  George C. Schatz,et al.  Single-Molecule Tip-Enhanced Raman Spectroscopy , 2012 .

[165]  R. V. Van Duyne,et al.  Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. , 2012, Nano letters.

[166]  A. Mews,et al.  Optical imaging of CdSe nanowires with nanoscale resolution. , 2011, Angewandte Chemie.

[167]  D. Naumann,et al.  Comparative Study of Far-Field and Near-Field Raman Spectra from Silicon-Based Samples and Biological Nanostructures , 2011 .

[168]  S. Kawata,et al.  Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. , 2011, Nano letters.

[169]  J. Popp,et al.  Characterizing cytochrome c states--TERS studies of whole mitochondria. , 2011, Chemical communications.

[170]  Renato Zenobi,et al.  Nanoscale chemical imaging of single-layer graphene. , 2011, ACS nano.

[171]  Volker Deckert,et al.  Distinction of nucleobases – a tip-enhanced Raman approach , 2011, Beilstein journal of nanotechnology.

[172]  P. Dittrich,et al.  Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers , 2011, Beilstein journal of nanotechnology.

[173]  Zhilin Yang,et al.  Deep ultraviolet tip-enhanced Raman scattering. , 2011, Chemical communications.

[174]  Valentinas Snitka,et al.  Novel gold cantilever for nano-Raman spectroscopy of graphene , 2011 .

[175]  Hongxing Xu,et al.  Is 4‐nitrobenzenethiol converted to p,p′‐dimercaptoazobenzene or 4‐aminothiophenol by surface photochemistry reaction? , 2011 .

[176]  R. Zenobi,et al.  Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[177]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[178]  S. Kazarian,et al.  Tip-enhanced Raman mapping with top-illumination AFM , 2011, Nanotechnology.

[179]  Rebecca L. Agapov,et al.  Prolonged Blinking with TERS Probes , 2011 .

[180]  L. Tilley,et al.  Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. , 2011, Nano letters.

[181]  L. Lucas,et al.  Surface-sensitive Raman spectroscopy of collagen I fibrils. , 2011, Biophysical journal.

[182]  J. Loos,et al.  High-Resolution Chemical Identification of Polymer Blend Thin Films Using Tip-Enhanced Raman Mapping , 2011 .

[183]  M. Chaigneau,et al.  Molecular Arrangement in Self-Assembled Azobenzene-Containing Thiol Monolayers at the Individual Domain Level Studied through Polarized Near-Field Raman Spectroscopy , 2011, International journal of molecular sciences.

[184]  Zachary D. Schultz,et al.  Protein-ligand binding investigated by a single nanoparticle TERS approach. , 2011, Chemical communications.

[185]  Martin A. B. Hedegaard,et al.  Laterally resolved and direct spectroscopic evidence of nanometer-sized lipid and protein domains on a single cell. , 2011, Small.

[186]  J. Loos,et al.  Near-field optical taper antennas fabricated with a highly replicable ac electrochemical etching method , 2011, Nanotechnology.

[187]  X. Xie,et al.  Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering , 2010, Science.

[188]  Markus B. Raschke,et al.  Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy , 2010 .

[189]  T. Schmid,et al.  Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. , 2010, Nano letters.

[190]  Achim Hartschuh,et al.  Tip-enhanced Raman spectroscopic imaging of localized defects in carbon nanotubes , 2010 .

[191]  C. Du,et al.  Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip , 2010 .

[192]  Y. Lyubchenko,et al.  Nanoimaging for prion related diseases , 2010, Prion.

[193]  Dai Zhang,et al.  Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[194]  K. Mingard,et al.  Single-crystal gold tip for tip-enhanced Raman spectroscopya) , 2010 .

[195]  Craig Williams,et al.  High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam , 2010 .

[196]  V. Deckert,et al.  Aromatic Amino Acid Monolayers Sandwiched between Gold and Silver: A Combined Tip-Enhanced Raman and Theoretical Approach† , 2010 .

[197]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy evidence for amorphous carbon contamination on gold surfaces , 2010 .

[198]  Rui Wang,et al.  Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes. , 2010, Applied optics.

[199]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[200]  M. Raschke,et al.  Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique , 2010, Analytical and bioanalytical chemistry.

[201]  R. Olmon,et al.  Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. , 2010, Nano letters.

[202]  De‐Yin Wu,et al.  Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect , 2009 .

[203]  C. Barrios,et al.  Tip‐induced heating in apertureless near‐field optics , 2009 .

[204]  D. Talaga,et al.  Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy , 2009 .

[205]  Renato Zenobi,et al.  Performing tip‐enhanced Raman spectroscopy in liquids , 2009 .

[206]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au(111) , 2009 .

[207]  M. Raschke,et al.  Polar phonon mode selection rules in tip-enhanced Raman scattering , 2009 .

[208]  V. Deckert,et al.  Tip-enhanced Raman scattering studies of histidine on novel silver substrates , 2009 .

[209]  Satoshi Kawata,et al.  Nano‐scale analysis of graphene layers by tip‐enhanced near‐field Raman spectroscopy , 2009 .

[210]  Christoph J. Brabec,et al.  Parabolic mirror‐assisted tip‐enhanced spectroscopic imaging for non‐transparent materials , 2009 .

[211]  Javier Aizpurua,et al.  Electromagnetic field enhancement in TERS configurations , 2009 .

[212]  S. Kawata,et al.  Deep-UV tip-enhanced Raman scattering , 2009 .

[213]  Volker Deckert,et al.  Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. , 2009, Physical chemistry chemical physics : PCCP.

[214]  Stanislaus S. Wong,et al.  Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. , 2009, Nature nanotechnology.

[215]  Dai Zhang,et al.  Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement , 2009 .

[216]  L. Novotný,et al.  Tip-enhanced near-field optical microscopy of carbon nanotubes , 2009, Analytical and bioanalytical chemistry.

[217]  S. Kawata,et al.  Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure. , 2009, Physical review letters.

[218]  S. Kawata,et al.  Tip-enhanced Raman spectroscopy for nanoscale strain characterization , 2009, Analytical and bioanalytical chemistry.

[219]  C. Barrios,et al.  Highly Stable, Protected Plasmonic Nanostructures for Tip Enhanced Raman Spectroscopy , 2009 .

[220]  S. Kawata,et al.  Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. , 2009, Optics express.

[221]  D. Richards,et al.  Etching gold tips suitable for tip-enhanced near-field optical microscopy. , 2009, The Review of scientific instruments.

[222]  Satoshi Kawata,et al.  Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. , 2009, Journal of biomedical optics.

[223]  Jürgen Popp,et al.  Raman to the limit: tip‐enhanced Raman spectroscopic investigations of a single tobacco mosaic virus , 2009 .

[224]  Volker Deckert,et al.  Ultraflat transparent gold nanoplates--ideal substrates for tip-enhanced Raman scattering experiments. , 2009, Small.

[225]  Razvigor Ossikovski,et al.  High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode , 2009 .

[226]  Ira W Levin,et al.  Tip-Enhanced Raman Spectroscopy and Imaging: An Apical Illumination Geometry , 2008, Applied spectroscopy.

[227]  H. Solak,et al.  Plasmon resonances of aluminum nanoparticles and nanorods , 2008 .

[228]  Volker Deckert,et al.  Perspectives for spatially resolved molecular spectroscopy – Raman on the nanometer scale , 2008, Journal of biophotonics.

[229]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[230]  T. Elsaesser,et al.  Light Confinement at Ultrasharp Metallic Tips , 2008 .

[231]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[232]  Volker Deckert,et al.  Tip-enhanced Raman scattering. , 2008, Chemical Society reviews.

[233]  R. Zenobi,et al.  Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates , 2008, Analytical and bioanalytical chemistry.

[234]  D. Barchiesi,et al.  Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy , 2008, Nanotechnology.

[235]  R. Zenobi,et al.  Towards chemical analysis of nanostructures in biofilms I: imaging of biological nanostructures , 2008, Analytical and bioanalytical chemistry.

[236]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[237]  Renato Zenobi,et al.  Tip-Enhanced Raman Spectroscopy Can See More: The Case of Cytochrome c , 2008 .

[238]  Hongxing Xu,et al.  Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles , 2008 .

[239]  D. Erni,et al.  Highly efficient nano-tips with metal : dielectric coatings for tip-enhanced spectroscopy applications , 2008 .

[240]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[241]  T. Kodama,et al.  Development of apertureless near‐field scanning optical microscope tips for tip‐enhanced Raman spectroscopy , 2008, Journal of microscopy.

[242]  A. Downes,et al.  Simulations of tip‐enhanced optical microscopy reveal atomic resolution , 2008, Journal of microscopy.

[243]  Marcus Sackrow,et al.  Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[244]  A. Meixner,et al.  High NA particle‐ and tip‐enhanced nanoscale Raman spectroscopy with a parabolic‐mirror microscope , 2008, Journal of microscopy.

[245]  Weihua Zhang,et al.  Near-Field Heating, Annealing, and Signal Loss in Tip-Enhanced Raman Spectroscopy , 2008 .

[246]  Satoshi Kawata,et al.  Focused Excitation of Surface Plasmon Polaritons Based on Gap-Mode in Tip-Enhanced Spectroscopy , 2007 .

[247]  R. Ossikovski,et al.  Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy , 2007 .

[248]  M. Schmitt,et al.  Deep-UV surface-enhanced Raman scattering , 2007 .

[249]  H. Fuchs,et al.  Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film. , 2007, Optics express.

[250]  B. Pettinger,et al.  High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. , 2007, The Review of scientific instruments.

[251]  Katrin F. Domke,et al.  Direct monitoring of plasmon resonances in a tip-surface gap of varying width , 2007 .

[252]  S. Kawata,et al.  Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy , 2007 .

[253]  Zhong-Qun Tian,et al.  Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips , 2007 .

[254]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[255]  J. Loos,et al.  Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging , 2007 .

[256]  Y. Morita,et al.  Temporal fluctuation of tip-enhanced raman spectra of adenine molecules , 2007 .

[257]  S. Kawata,et al.  Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy , 2007 .

[258]  M. Raschke,et al.  Reply to ``Comment on `Scanning-probe Raman spectroscopy with single-molecule sensitivity' '' , 2007 .

[259]  J. Maguire,et al.  High contrast scanning nano‐Raman spectroscopy of silicon , 2007 .

[260]  Katrin F. Domke,et al.  Enhanced Raman spectroscopy: Single molecules or carbon? , 2007 .

[261]  Ehrenfried Zschech,et al.  Nano-raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures , 2007 .

[262]  Dai Zhang,et al.  Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). , 2007, Journal of the American Chemical Society.

[263]  Christian Hafner,et al.  Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. , 2007, Nano letters.

[264]  R. Zenobi,et al.  Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips , 2007, Analytical and bioanalytical chemistry.

[265]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[266]  S. Kawata,et al.  Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy , 2007 .

[267]  Quang Nguyen,et al.  Simple model for the polarization effects in tip-enhanced Raman spectroscopy , 2007 .

[268]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[269]  S. Kawata,et al.  Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. , 2006, The Journal of chemical physics.

[270]  S. Kawata,et al.  Vibrational Analysis of Organic Molecules Encapsulated in Carbon Nanotubes by Tip-Enhanced Raman Spectroscopy , 2006 .

[271]  R. Zenobi,et al.  Methods for molecular nanoanalysis , 2006 .

[272]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[273]  Dai Zhang,et al.  Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). , 2006, Journal of the American Chemical Society.

[274]  Weihua Zhang,et al.  Enhancement of Raman Signals with Silver-Coated Tips , 2006, Applied spectroscopy.

[275]  Jürgen Popp,et al.  On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[276]  Neil A. Anderson,et al.  Nanoscale optical imaging of single-walled carbon nanotubes , 2006 .

[277]  C. Röcker,et al.  An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy. , 2006, Biopolymers.

[278]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[279]  S. Kawata,et al.  Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. , 2006, Nano letters.

[280]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[281]  A. Kisliuk,et al.  Optical properties and enhancement factors of the tips for apertureless near-field optics , 2006 .

[282]  Alistair Elfick,et al.  Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. , 2006, The journal of physical chemistry. B.

[283]  S. Kawata,et al.  Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles , 2006 .

[284]  R. Zenobi,et al.  Multifunctional microscope for far-field and tip-enhanced Raman spectroscopy , 2006 .

[285]  S. Kawata,et al.  Near-field Raman scattering investigation of tip effects on C 60 molecules , 2006 .

[286]  Conor L Evans,et al.  Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[287]  J. Maguire,et al.  Nano-Raman spectroscopy with side-illumination optics , 2005 .

[288]  Lukas Novotny,et al.  Nanoscale optical imaging of excitons in single-walled carbon nanotubes. , 2005, Nano letters.

[289]  I. Notingher,et al.  Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. , 2005, The journal of physical chemistry. B.

[290]  S. Kawata,et al.  Fabrication of Silver Probes for Localized Plasmon Excitation in Near-field Raman Spectroscopy , 2005 .

[291]  J. Kirkham,et al.  Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy , 2005 .

[292]  Gerhard Ertl,et al.  Tip‐enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields , 2005 .

[293]  A. Demming,et al.  Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. , 2005, The Journal of chemical physics.

[294]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[295]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[296]  S. Kawata,et al.  DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. , 2005, The journal of physical chemistry. B.

[297]  Christopher C Davis,et al.  Resolution enhancement of a surface immersion microscope near the plasmon resonance. , 2005, Optics letters.

[298]  Lukas Novotny,et al.  Nanoscale vibrational analysis of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[299]  Satoshi Kawata,et al.  Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy , 2004 .

[300]  Tak W. Kee,et al.  Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. , 2004, Optics letters.

[301]  Hiro-o Hamaguchi,et al.  Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber , 2004 .

[302]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[303]  L. Eng,et al.  Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[304]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[305]  S. Kawata,et al.  Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule , 2004 .

[306]  Lukas Novotny,et al.  Tip-enhanced optical spectroscopy , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[307]  B. Ren,et al.  Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching , 2004 .

[308]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[309]  G. Ertl,et al.  Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN− ions at gold surfaces , 2003 .

[310]  C. L. Jahncke,et al.  The electric field at the apex of a near‐field probe: implications for nano‐Raman spectroscopy , 2003 .

[311]  David Richards,et al.  Tip-enhanced Raman microscopy: practicalities and limitations , 2003 .

[312]  S. Kawata,et al.  Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy , 2003 .

[313]  L. Novotný,et al.  Near‐field Raman spectroscopy using a sharp metal tip , 2003, Journal of microscopy.

[314]  A. Meixner,et al.  Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution , 2003, Journal of microscopy.

[315]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[316]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[317]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[318]  Satoshi Kawata,et al.  Near-field enhanced Raman spectroscopy using side illumination optics , 2002 .

[319]  Gerhard Ertl,et al.  Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces , 2002 .

[320]  X. Xie,et al.  Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy , 2002 .

[321]  C. Sukenik,et al.  Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: Enhancement of second-harmonic generation , 2002 .

[322]  Satoshi Kawata,et al.  Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope , 2002 .

[323]  Andreas Volkmer,et al.  Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy , 2002 .

[324]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[325]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[326]  M. Hashimoto,et al.  Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[327]  V. Sandoghdar,et al.  A single gold particle as a probe for apertureless scanning near‐field optical microscopy , 2001, Journal of microscopy.

[328]  A. Meixner,et al.  A high numerical aperture parabolic mirror as imaging device for confocal microscopy. , 2001, Optics express.

[329]  Gerhard Ertl,et al.  Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy , 2000 .

[330]  Volker Deckert,et al.  Controlled Formation of Isolated Silver Islands for Surface-Enhanced Raman Scattering , 2000 .

[331]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[332]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[333]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[334]  I. Yamaguchi,et al.  Near-Field Scanning Optical Microscope Using a Gold Particle , 1997 .

[335]  R. Ulbrich,et al.  Probe‐surface interaction in near‐field optical microscopy: The nonlinear bending force mechanism , 1996 .

[336]  A. Rakić,et al.  Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. , 1995, Applied optics.

[337]  S. Kawata,et al.  Near-field scanning optical microscope with a metallic probe tip. , 1994, Optics letters.

[338]  Fischer Uc,et al.  Observation of single-particle plasmons by near-field optical microscopy. , 1989 .

[339]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[340]  F. Miller Misassignment of the strong Raman band near 1000 cm−1 in some substituted benzenes, and the Herzberg versus Wilson convention for numbering the vibrations of benzene , 1988 .

[341]  Sanford A. Asher,et al.  UV resonance Raman excitation profiles of the aromatic amino acids , 1986 .

[342]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[343]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[344]  R. Durand,et al.  Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes , 1980 .

[345]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[346]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[347]  J. Thomas,et al.  Optical properties in the far u.v. and electronic structure of indium films , 1975 .

[348]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[349]  M. Raschke,et al.  Supporting Information to: Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control , 2016 .

[350]  Maria Laura Coluccio,et al.  Plasmonic 3D-structures based on silver decorated nanotips for biological sensing , 2016 .

[351]  Satoshi Kawata,et al.  Deep-UV biological imaging by lanthanide ion molecular protection. , 2016, Biomedical optics express.

[352]  M. Raschke,et al.  Supporting Information to: Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics , 2015 .

[353]  P. R. Dunstan,et al.  Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy , 2014 .

[354]  M. Nogami,et al.  The controlled fabrication of “Tip-On-Tip” TERS probes , 2014 .

[355]  A. Meixner,et al.  Surface- and tip-enhanced Raman spectroscopy of DNA , 2010 .

[356]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in one-dimensional systems. , 2009, Physical review letters.

[357]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[358]  Volker Deckert,et al.  Surface- and tip-enhanced Raman scattering of DNA components† , 2006 .

[359]  Neil A. Anderson,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Optimal Configurations for Imaging Polarimeters: Impact of Image Noise and Systematic Errors , 2006 .

[360]  B. Ren,et al.  Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. , 2004, Angewandte Chemie.

[361]  Clemens Storz,et al.  NONLINEAR ABSORPTION EXTENDS CONFOCAL FLUORESCENCE MICROSCOPY INTO THE ULTRA-VIOLET REGIME AND CONFINES THE ILLUMINATION VOLUME , 1994 .

[362]  Xiaohui Xie,et al.  Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2008, Science.