Localization landscape for Dirac fermions

In the theory of Anderson localization, a landscape function predicts where wave functions localize in a disordered medium, without requiring the solution of an eigenvalue problem. It is known how to construct the localization landscape for the scalar wave equation in a random potential, or equivalently for the Schrodinger equation of spinless electrons. Here we generalize the concept to the Dirac equation, which includes the effects of spin-orbit coupling and allows to study quantum localization in graphene or in topological insulators and superconductors. The landscape function $u(r)$ is defined on a lattice as a solution of the differential equation $\overline{H}u(r)=1$, where $\overline{H}$ is the Ostrowsky comparison matrix of the Dirac Hamiltonian. Random Hamiltonians with the same (positive definite) comparison matrix have localized states at the same positions, defining an equivalence class for Anderson localization. This provides for a mapping between the Hermitian and non-Hermitian Anderson model.

[1]  B. Shklovskii,et al.  Anderson transition in three-dimensional systems with non-Hermitian disorder , 2019, Physical Review B.

[2]  E. Economou,et al.  Non-Hermitian disorder in two-dimensional optical lattices , 2019, 1909.13816.

[3]  S. Balasubramanian,et al.  Many-body localization landscape , 2019, Physical Review B.

[4]  C. Weisbuch,et al.  Universality of fold-encoded localized vibrations in enzymes , 2019, Scientific Reports.

[5]  Douglas N. Arnold,et al.  Computing Spectra without Solving Eigenvalue Problems , 2017, SIAM J. Sci. Comput..

[6]  D. Arnold,et al.  Hidden landscape of an Anderson insulator , 2019, Journal Club for Condensed Matter Physics.

[7]  C. Weisbuch,et al.  Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes , 2017, 1704.05533.

[8]  James S. Speck,et al.  Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers , 2017 .

[9]  Claude Weisbuch,et al.  Localization landscape theory of disorder in semiconductors. I. Theory and modeling , 2017, 1704.05512.

[10]  C. Beenakker,et al.  A road to reality with topological superconductors , 2016, Nature Physics.

[11]  Marcel Filoche,et al.  Effective Confining Potential of Quantum States in Disordered Media. , 2015, Physical review letters.

[12]  Localization of Quantum States and Landscape Functions , 2015, 1510.06353.

[13]  S. Mayboroda,et al.  Dual landscapes in Anderson localization on discrete lattices , 2015 .

[14]  M. Wimmer,et al.  Kwant: a software package for quantum transport , 2013, 1309.2926.

[15]  S. Mayboroda,et al.  The landscape of Anderson localization in a disordered medium , 2013 .

[16]  Alexis R. Hern'andez,et al.  Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry , 2012, 1210.7037.

[17]  S. Mayboroda,et al.  Universal mechanism for Anderson and weak localization , 2012, Proceedings of the National Academy of Sciences.

[18]  W. Marsden I and J , 2012 .

[19]  C. Beenakker,et al.  Majorana bound states without vortices in topological superconductors with electrostatic defects. , 2010, Physical review letters.

[20]  C. Beenakker,et al.  Finite difference method for transport properties of massless Dirac fermions , 2008, 0810.4787.

[21]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[22]  Jeroen van den Brink,et al.  Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations , 2007 .

[23]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[24]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[25]  F. Wilczek,et al.  Lattice fermions. , 1987, Physical review letters.

[26]  R. Stacey,et al.  Eliminating lattice fermion doubling , 1982 .

[27]  A. Ostrowski Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen , 1956 .

[28]  A. Ostrowski Über die determinanten mit überwiegender Hauptdiagonale , 1937 .