Combining farm simulation with frontier efficiency analysis

The model used, GAMEDE, is a “whole-farm” dynamic model composed of 6 biophysical modules and a management system (Vayssieres et al, 2009). This simulation model gives accurate predictions for various sustainability indicators (labor, energy consumption, production, nitrogen leaks to the environment…) to characterize observed or hypothetical farms. As GAMEDE is based on a stock-flow approach, we can monitor the farm stocks (slurry, fodders…) over time. GAMEDE also gives a full description of management operations of the production system. The GAMEDE model is randomly parameterized with the objective to cover the realm of the possible production systems by simulation. Key issues of the methodology are selecting input parameters and defining lower and upper bounds to these parameters. Expert knowledge is very useful to define these bounds. Even though the simulation approach constitutes a relevant tool for describing the production system, it can not provide a full efficiency analysis taking into account multiple input parameters. We suggest combining GAMEDE with “Data Envelopment Analysis” (DEA) to assess the efficiency of a large variety of simulated farms (frontier efficiency analysis). Each farm is characterized by different structural and management inputs parameters, inflows and sustainability indicators (including outflows). The last two types of variables are respectively inputs and outputs used in the DEA model. For inefficient farms, potential efficiency progress is calculated as the distance between these farms and the frontier. The main advantage of our methodology is to benefit of the synergy between simulation and efficiency frontier modelling, as drawback of each method are balanced by the asset of the other method.

[1]  Isabelle Piot-Lepetit,et al.  Pricing Organic Nitrogen Under The Weak Disposability Assumption: An Application to the French Pig Sector , 1998 .

[2]  A. Mcleod,et al.  World livestock 2011 - livestock in food security. , 2011 .

[3]  David Berre,et al.  Analyse de l’efficience éco-environnementale des exploitations laitières réunionnaises , 2011 .

[4]  Ken E. Giller,et al.  Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM , 2009 .

[5]  Emmanuel Thanassoulis,et al.  Data Envelopment Analysis:the mathematical programming approach to efficiency analysis , 2008 .

[6]  J. Vlaming,et al.  Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya , 2001 .

[7]  Francisco J. Mesías,et al.  Assessing the technical efficiency of extensive livestock farming systems in Extremadura, Spain , 2009 .

[8]  Isabelle Pison Modélisation inverse pour l'optimisation des sources primaires de pollution atmosphérique à l'échelle régionale , 2005 .

[9]  A. McMichael,et al.  Ecosystems and Human well-being , 2003 .

[10]  H. Sinoquet,et al.  An overview of the crop model STICS , 2003 .

[11]  Marie-Josée Cros,et al.  A biophysical dairy farm model to evaluate rotational grazing management strategies , 2003 .

[12]  F Guerrin,et al.  Modelling farmers' action: decision rules capture methodology and formalisation structure: a case of biomass flow operations in dairy farms of a tropical island. , 2007, Animal : an international journal of animal bioscience.

[13]  Philippe Lecomte,et al.  GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises Part I - Whole-farm dynamic model , 2009 .

[14]  Philippe Lecomte,et al.  Integrated participatory modelling of actual farms to support policy making on sustainable intensification , 2011 .

[15]  Jean-François Martiné,et al.  Modélisation de la production potentielle de la canne à sucre en zone tropicale, sous conditions thermiques et hydriques contrastées. Applications du modèle , 2003 .

[16]  P. W. Wilson,et al.  Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives , 2013 .

[17]  P. Faverdin,et al.  Alimentation des vaches laitières , 2010 .

[18]  R. Jarrige Ruminant nutrition : recommended allowances and feed tables , 1989 .

[19]  Henry D. Jacoby,et al.  Combined use of optimization and simulation models in river basin planning , 1972 .

[20]  P. Faverdin,et al.  Prévoir l'ingestion d'herbe et la production des vaches laitières : GrazeIn, un modèle pour raisonner l'alimentation au pâturage , 2004 .

[21]  M. E. Van Amburgh,et al.  The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion , 2004 .

[22]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[23]  F. Nevens,et al.  Farm gate nitrogen surpluses and nitrogen use efficiency of specialized dairy farms in Flanders: Evolution and future goals , 2006 .

[24]  François Bocquier,et al.  GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises. Part II - Interactive simulation of various management strategies with diverse stakeholders , 2009 .

[25]  Bruno Dorin,et al.  Agricultures et alimentations du monde en 2050 : scénarios et défis pour un développement durable , 2009 .

[26]  W. Reid,et al.  Millennium Ecosystem Assessment , 2005 .