A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers.

We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories.

[1]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[2]  Kohei Miyazono,et al.  TGFβ signalling: a complex web in cancer progression , 2010, Nature Reviews Cancer.

[3]  A. Services,et al.  Integrated genomic and molecular characterization of cervical cancer. , 2017 .

[4]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[5]  Marcin Imielinski,et al.  Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers , 2015, Nature Genetics.

[6]  John N. Weinstein,et al.  PRADA: pipeline for RNA sequencing data analysis , 2014, Bioinform..

[7]  Joshua M. Korn,et al.  Integrated detection and population-genetic analysis of SNPs and copy number variation , 2008, Nature Genetics.

[8]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[9]  Joshua M. Korn,et al.  Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs , 2008, Nature Genetics.

[10]  Prahlad T. Ram,et al.  A pan-cancer proteomic perspective on The Cancer Genome Atlas , 2014, Nature Communications.

[11]  Joshua M. Stuart,et al.  RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection , 2014, PloS one.

[12]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[13]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[14]  G. Konecny,et al.  PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions , 2016, British Journal of Cancer.

[15]  Xiaoming Fan,et al.  By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma , 2017, International journal of cancer.

[16]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[17]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[18]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[19]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[20]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[21]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[22]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.

[23]  D. S. Perez,et al.  Non-random inactivation of large common fragile site genes in different cancers , 2007, Cytogenetic and Genome Research.

[24]  Michel Sadelain,et al.  Safe harbours for the integration of new DNA in the human genome , 2011, Nature Reviews Cancer.

[25]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[26]  P. Carmeliet,et al.  Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. , 2016, Cancer cell.

[27]  Jeong Hoon Kim,et al.  CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. , 2008, Molecular cell.

[28]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[29]  Shuangyue Liu,et al.  LATS1 suppresses proliferation and invasion of cervical cancer , 2017, Molecular medicine reports.

[30]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[31]  Justin Chu,et al.  BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters , 2014, Bioinform..

[32]  Kristian Cibulskis,et al.  ContEst: estimating cross-contamination of human samples in next-generation sequencing data , 2011, Bioinform..

[33]  Steven J. M. Jones,et al.  Integrated genomic and molecular characterization of cervical cancer , 2017, Nature.

[34]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[35]  Trevor J Pugh,et al.  Oncotator: Cancer Variant Annotation Tool , 2015, Human mutation.

[36]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[37]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[38]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[39]  Rachel D. Mullen,et al.  Molecular Genetics of Müllerian Duct Formation, Regression and Differentiation , 2014, Sexual Development.

[40]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[41]  K. Coombes,et al.  Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer , 2011, Clinical Proteomics.

[42]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[43]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[44]  G. Getz,et al.  PathSeq: software to identify or discover microbes by deep sequencing of human tissue , 2011, Nature Biotechnology.

[45]  Serena Nik-Zainal,et al.  Mechanisms underlying mutational signatures in human cancers , 2014, Nature Reviews Genetics.

[46]  B. Kerem,et al.  Oncogenes create a unique landscape of fragile sites , 2015, Nature Communications.

[47]  A. Rishi,et al.  CARP-1 / CCAR1: A biphasic regulator of cancer cell growth and apoptosis , 2015, Oncotarget.

[48]  G. Mills,et al.  Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells , 2006, Molecular Cancer Therapeutics.

[49]  A. Jemal,et al.  Cancer statistics, 2017 , 2017, CA: a cancer journal for clinicians.

[50]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[51]  Julian Gehring,et al.  SomaticSignatures: inferring mutational signatures from single-nucleotide variants , 2014, bioRxiv.

[52]  Hiromi Nakamura,et al.  Trans-ancestry mutational landscape of hepatocellular carcinoma genomes , 2014, Nature Genetics.

[53]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[54]  W. V. van IJcken,et al.  Control of developmentally primed erythroid genes by combinatorial co-repressor actions , 2015, Nature Communications.

[55]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[56]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[57]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[58]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[59]  Rehan Akbani,et al.  Integrated Molecular Characterization of Uterine Carcinosarcoma. , 2017, Cancer cell.

[60]  B. Taylor,et al.  deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution , 2016, Genome Biology.

[61]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[62]  Andrew J. Sedgewick,et al.  Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM , 2013, Bioinform..

[63]  Clement Adebamowo,et al.  Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context , 2018, Cell reports.

[64]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[65]  Z. Lai,et al.  Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer , 2014, Protein & Cell.

[66]  Eibe Frank,et al.  Introducing Machine Learning Concepts with WEKA , 2016, Statistical Genomics.

[67]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[68]  Qiang Li,et al.  PFKFB3 is involved in breast cancer proliferation, migration, invasion and angiogenesis. , 2018, International journal of oncology.

[69]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[70]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[71]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[72]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[73]  Aakrosh Ratan,et al.  Identification of indels in next-generation sequencing data , 2015, BMC Bioinformatics.

[74]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[75]  P. Gunaratne,et al.  Single-Molecule Sequencing Reveals Estrogen-Regulated Clinically Relevant lncRNAs in Breast Cancer. , 2015, Molecular Endocrinology.