Carbon nanotube-based membranes: Fabrication and application to desalination

Abstract Membranes based on carbon nanotubes (CNTs) have been highlighted as an emerging technology for water purification system applications. With their ultra high water flux and low biofouling potential, CNT membranes are believed to lack various problems encountered when using the conventional membrane separation process that requires a large amount of energy and meticulous maintenance. Although diverse types of CNT membranes have been reported, no commercialized products are available. This article reviews the proper manufacturing methods for CNT membranes and speculates on their performances. Future applications of integrated CNT membrane systems are also outlined.

[1]  Dong Ok Shin,et al.  Hierarchically Organized Carbon Nanotube Arrays from Self‐Assembled Block Copolymer Nanotemplates , 2008 .

[2]  C. Vörösmarty,et al.  Global water resources: vulnerability from climate change and population growth. , 2000, Science.

[3]  L. Chernozatonskii,et al.  Correlation between metal catalyst particle size and carbon nanotube growth , 2002 .

[4]  Christoph Dellago,et al.  Macroscopically ordered water in nanopores , 2008, Proceedings of the National Academy of Sciences.

[5]  M. Elimelech,et al.  Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure , 2007 .

[6]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[7]  Heinz Ludwig,et al.  Energy consumption of reverse osmosis seawater desalination - possibilities for its optimisation in design and operation of SWRO plants , 2010 .

[8]  Cong-jie Gao,et al.  Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes , 2009 .

[9]  A. Rinzler,et al.  Self-assembly of tubular fullerenes , 1995 .

[10]  Kostas Kostarelos,et al.  The long and short of carbon nanotube toxicity , 2008, Nature Biotechnology.

[11]  Sang Ouk Kim,et al.  Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays. , 2009, Nano letters.

[12]  M C M van Loosdrecht,et al.  Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. , 2008, Water research.

[13]  J. Falconer,et al.  High density, vertically-aligned carbon nanotube membranes. , 2009, Nano letters.

[14]  Ben Corry,et al.  Designing carbon nanotube membranes for efficient water desalination. , 2008, The journal of physical chemistry. B.

[15]  J. James,et al.  A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks , 2006, Critical reviews in toxicology.

[16]  Mikel Duke,et al.  Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation , 2010, Materials.

[17]  Quan-hong Yang,et al.  Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters , 2003 .

[18]  Young-Seak Lee,et al.  A high resolution XPS study of sidewall functionalized MWCNTs by fluorination , 2009 .

[19]  Nidal Hilal,et al.  Nanofiltration of highly concentrated salt solutions up to seawater salinity , 2005 .

[20]  Yuliang Zhao,et al.  Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. , 2005, Environmental science & technology.

[21]  Carbon Nanotubes and Nanofluidic Transport , 2009 .

[22]  S. H. Kim,et al.  Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. , 2005, Environmental science & technology.

[23]  M. Elimelech,et al.  Environmental applications of carbon-based nanomaterials. , 2008, Environmental science & technology.

[24]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[25]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[26]  N. Chopra,et al.  Bifunctional Carbon Nanotubes by Sidewall Protection , 2005 .

[27]  P. Christofides,et al.  Effect of Thermodynamic Restriction on Energy Cost Optimization of RO Membrane Water Desalination , 2009 .

[28]  Shin-Ho Chung,et al.  Salt rejection and water transport through boron nitride nanotubes. , 2009, Small.

[29]  G. Dresselhaus,et al.  Size Effects in Carbon Nanotubes , 1998 .

[30]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[31]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[32]  John A. Thomas,et al.  Reassessing fast water transport through carbon nanotubes. , 2008, Nano letters.

[33]  S. Kim,et al.  Vertical Single-Walled Carbon Nanotube Arrays via Block Copolymer Lithography , 2009 .

[34]  Alan M. Cassell,et al.  Carbon nanotube growth by PECVD: a review , 2003 .

[35]  N. Chopra,et al.  Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. , 2011, ACS nano.

[36]  P. Goh,et al.  Transport and separation properties of carbon nanotube-mixed matrix membrane , 2009 .

[37]  P. Messersmith,et al.  Nanomaterials: enzymes on nanotubes thwart fouling. , 2007, Nature nanotechnology.

[38]  L. Yahia,et al.  Biocompatibility and applications of carbon nanotubes in medical nanorobots , 2007, International journal of nanomedicine.

[39]  Hyung Gyu Park,et al.  Ion exclusion by sub-2-nm carbon nanotube pores , 2008, Proceedings of the National Academy of Sciences.

[40]  A. Striolo The mechanism of water diffusion in narrow carbon nanotubes. , 2006, Nano letters.

[41]  Frederick George Donnan,et al.  Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology , 1995 .

[42]  Michael V. Liga,et al.  Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. , 2008, Water research.

[43]  P. Ajayan,et al.  Carbon Nanotube Membranes: A New Frontier in Membrane Science , 2010 .

[44]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[45]  Mainak Majumder,et al.  Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. , 2005, Journal of the American Chemical Society.

[46]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[47]  Seunghyun Baik,et al.  Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity , 2010 .

[48]  Thomas Melin,et al.  State-of-the-art of reverse osmosis desalination , 2007 .

[49]  M. Salleh,et al.  Continuous production of carbon nanotubes – A review , 2011 .

[50]  Joerg R. Jinschek,et al.  Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. , 2007, Nano letters.

[51]  Julius Glater,et al.  The early history of reverse osmosis membrane development , 1998 .

[52]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[53]  Menachem Elimelech,et al.  Single-walled carbon nanotubes exhibit strong antimicrobial activity. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[54]  Woo Nyon Kim,et al.  Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes , 2006 .

[55]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[56]  Y. S. Lin,et al.  Vertically aligned carbon nanotube membranes on macroporous alumina supports , 2007 .

[57]  P. Bernier,et al.  Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. , 2003, Chemical communications.

[58]  M. Elimelech,et al.  Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. , 2010, Environmental science & technology.

[59]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[60]  Osamah M. Al-Hawaj The design aspects of rotary work exchanger for SWRO , 2009 .

[61]  S. Paddison,et al.  Proton transport in water confined in carbon nanotubes: a reactive molecular dynamics study , 2010 .

[62]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[63]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[64]  Ben Corry,et al.  Water and ion transport through functionalised carbon nanotubes: implications for desalination technology , 2011 .

[65]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .