Gradient‐echo and spin‐echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla

Sensitivity and specificity of blood oxygenation level–dependent (BOLD) functional MRI (fMRI) is sensitive to magnetic field strength and acquisition methods. We have investigated gradient‐echo (GE)‐ and spin‐echo (SE)‐BOLD fMRI at ultrahigh fields of 9.4 and 15.2 Tesla.

[1]  Tao Jin,et al.  Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD , 2007, NeuroImage.

[2]  Seong-Gi Kim,et al.  Simultaneous Blood Oxygenation Level-Dependent and Cerebral Blood Flow Functional Magnetic Resonance Imaging during Forepaw Stimulation in the Rat , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  Tao Jin,et al.  Source of nonlinearity in echo‐time‐dependent BOLD fMRI , 2006, Magnetic resonance in medicine.

[4]  Mathias Hoehn,et al.  No Increase of the Blood Oxygenation Level-Dependent Functional Magnetic Resonance Imaging Signal with Higher Field Strength: Implications for Brain Activation Studies , 2010, The Journal of Neuroscience.

[5]  J. J. Chen,et al.  BOLD‐specific cerebral blood volume and blood flow changes during neuronal activation in humans , 2009, NMR in biomedicine.

[6]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[8]  Seong-Gi Kim,et al.  Temporal Dynamics and Spatial Specificity of Arterial and Venous Blood Volume Changes during Visual Stimulation: Implication for Bold Quantification , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Fuqiang Zhao,et al.  Cortical depth‐dependent gradient‐echo and spin‐echo BOLD fMRI at 9.4T , 2004, Magnetic resonance in medicine.

[11]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[12]  D P Auer,et al.  Signal undershoots following visual stimulation: A comparison of gradient and spin‐echo BOLD sequences , 1998, Magnetic resonance in medicine.

[13]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[14]  Priz.-Doz. Dr. Thomas Bär The Vascular System of the Cerebral Cortex , 1980, Advances in Anatomy, Embryology and Cell Biology.

[15]  Jeff H. Duyn,et al.  Comparison of 3D BOLD Functional MRI with Spiral Acquisition at 1.5 and 4.0 T , 1999, NeuroImage.

[16]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[17]  J. Gore,et al.  Intravascular susceptibility contrast mechanisms in tissues , 1994, Magnetic resonance in medicine.

[18]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[19]  Ravi S. Menon,et al.  On the characteristics of functional magnetic resonance imaging of the brain. , 1998, Annual review of biophysics and biomolecular structure.

[20]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[21]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[22]  R. Turner,et al.  Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI , 1993, Magnetic resonance in medicine.

[23]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[24]  A. Kleinschmidt,et al.  Brain or veinoxygenation or flow? On signal physiology in functional MRI of human brain activation , 1994, NMR in biomedicine.

[25]  M Hoehn-Berlage,et al.  Variation of functional MRI signal in response to frequency of somatosensory stimulation in α‐chloralose anesthetized rats , 1996, Magnetic resonance in medicine.

[26]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[27]  B R Rosen,et al.  NMR imaging of changes in vascular morphology due to tumor angiogenesis , 1998, Magnetic resonance in medicine.

[28]  E. P. Vovenko,et al.  Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats , 1999, Pflügers Archiv.

[29]  Seong-Gi Kim,et al.  Effects of the α2‐adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex , 2013, The European journal of neuroscience.

[30]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[31]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[32]  G. Bruce Pike,et al.  Origins of the BOLD post-stimulus undershoot , 2009, NeuroImage.

[33]  B. Rosen,et al.  Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation , 1998, Magnetic resonance in medicine.

[34]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[35]  M. Ueki,et al.  Effect of alpha‐chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat , 1992, Acta anaesthesiologica Scandinavica.

[36]  Catriona Dutreuilh,et al.  Introduction , 2019 .

[37]  Klaus Scheffler,et al.  Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T , 2014, Magnetic resonance in medicine.

[38]  Peter A. Bandettini,et al.  Effects of biophysical and physiologic parameters on brain activation‐induced R2* and R2 changes: Simulations using a deterministic diffusion model , 1995, Int. J. Imaging Syst. Technol..

[39]  Xiaoping Hu,et al.  Potential pitfalls of functional MRI using conventional gradient‐recalled echo techniques , 1994, NMR in biomedicine.

[40]  R. S. Hinks,et al.  Spin‐echo and gradient‐echo epi of human brain activation using bold contrast: A comparative study at 1.5 T , 1994, NMR in biomedicine.

[41]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[42]  S. Ogawa,et al.  Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  G. Crelier,et al.  Stimulus-Dependent BOLD and Perfusion Dynamics in Human V1 , 1999, NeuroImage.

[44]  Jun Hua,et al.  Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent , 2011, NMR in biomedicine.

[45]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Tao Jin,et al.  Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation , 2008, NeuroImage.

[47]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[48]  F. Hyder,et al.  Dynamic Magnetic Resonance Imaging of the Rat Brain during Forepaw Stimulation , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[49]  Alan P. Koretsky,et al.  Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia , 2006, NeuroImage.

[50]  A. Kleinschmidt,et al.  Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man , 1996, Magnetic resonance in medicine.

[51]  Kazuto Masamoto,et al.  Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo two‐photon microscopy , 2008, Magnetic resonance in medicine.

[52]  Kevin Murphy,et al.  Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI , 2007, NeuroImage.