A Multiobjective Approach to Classification in Drug Discovery
暂无分享,去创建一个
Michael Emmerich | Boris Naujoks | Patrick Echtenbruck | M. Emmerich | B. Naujoks | Patrick Echtenbruck
[1] V. Cutello,et al. A multi-objective evolutionary approach to the protein structure prediction problem , 2006, Journal of The Royal Society Interface.
[2] David Rogers,et al. Cheminformatics analysis and learning in a data pipelining environment , 2006, Molecular Diversity.
[3] Nicola Beume,et al. SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..
[4] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[5] David Rogers,et al. Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..
[6] John P. Overington,et al. ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..
[7] Giuseppe Nicosia,et al. Pareto Optimal Design for Synthetic Biology , 2015, IEEE Transactions on Biomedical Circuits and Systems.
[8] Michael T. M. Emmerich,et al. A spam filtering multi-objective optimization study covering parsimony maximization and three-way classification , 2016, Appl. Soft Comput..
[9] Andreas Ziegler,et al. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R , 2015, 1508.04409.
[10] Jakob Bossek,et al. ecr 2.0: a modular framework for evolutionary computation in R , 2017, GECCO.
[11] Michael T. M. Emmerich,et al. Improving the drug discovery process by using multiple classifier systems , 2019, Expert Syst. Appl..