Radio-Frequency Coils for a Magnetic Resonant Microscope Based on Helium Tomograph with a Field of 1.5 T
暂无分享,去创建一个
D. S. Dmitriev | A. N. Bagdinova | V. Lysenko | A. Protopopov | A. Gippius | E. Demikhov | A. Rybakov | M. V. Konstantinov | V. I. Buyakas | D. Ivlev
[1] J. Ackerman,et al. Design of a Magnet and Gradient Coils for a Tabletop Liquid-Helium-Free, Persistent-Mode 1.5-T MgB$_2$ Osteoporosis MRI , 2020, IEEE Transactions on Applied Superconductivity.
[2] Владимир Павлович Чехонин,et al. Магнитно-резонансный томограф на основе компактного сверхпроводящего магнита , 2019, Приборы и техника эксперимента.
[3] S. Pichardo,et al. Development of custom RF coils for use in a small animal platform for magnetic resonance-guided focused ultrasound hyperthermia compatible with a clinical MRI scanner , 2018, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.
[4] V. Lysenko,et al. Performance Test of 1.5 T Cryogen-Free Orthopedic MRI Magnet , 2018, IEEE Transactions on Applied Superconductivity.
[5] Ines C. Lin,et al. The Diagnostic Utility and Clinical Implications of Wrist MRI in the Pediatric Population , 2018, Hand.
[6] Sigrun Goluch,et al. In vivo MRI of the human finger at 7 T , 2017, Magnetic resonance in medicine.
[7] V. Lysenko,et al. 1.5 T Cryogen Free Superconducting Magnet for Dedicated MRI , 2016, IEEE Transactions on Applied Superconductivity.
[8] V. Lysenko,et al. 9 T NbTi Cryogen Free HTS Test Stand , 2012, IEEE Transactions on Applied Superconductivity.
[9] E. Demikhov,et al. A closed-cycle cryostat for optical and Mössbauer spectroscopy in the temperature range 4.2–300 K , 2010 .
[10] Alexandra Badea,et al. Small animal imaging with magnetic resonance microscopy. , 2008, ILAR journal.