On the design of pole-zero approximations using a logarithmic error measure

For obtaining a pole-zero approximation of a linear, discrete-time system, a new method is presented which minimizes the squared difference between the log-magnitude spectrum of the system and that of the approximation. Using an iterative procedure, a locally optimal solution is found for the poles and zeros of the system approximation. >

[1]  Tadashi Kitamura,et al.  A direct approximation technique of log magnitude response for digital filters , 1977 .

[2]  Takao Kobayashi,et al.  Design of IIR digital filters with arbitrary log magnitude function by WLS techniques , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  A. Gray,et al.  Distance measures for speech processing , 1976 .

[4]  R. Gray,et al.  Distortion measures for speech processing , 1980 .

[5]  John Makhoul,et al.  Spectral linear prediction: Properties and applications , 1975 .

[6]  K. Steiglitz Computer-aided design of recursive digital filters , 1970 .

[7]  C L Patterson,et al.  Design of ARMA Digital Filters by Pole-Zero Decomposition , .

[8]  E Charles Design of IIR/FIR Filters\Using a Frequency Domain Bootstrapping Technique and LPC Methods , 1983 .

[9]  Amro El-Jaroudi,et al.  Discrete all-pole modeling , 1991, IEEE Trans. Signal Process..

[10]  Frederic L. Wightman,et al.  A New Approach to the Study of Human Sound Localization , 1987 .

[11]  A. El-Jaroudi,et al.  Discrete pole-zero modeling and applications , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[12]  David Malah,et al.  Speech enhancement using a minimum mean-square error log-spectral amplitude estimator , 1984, IEEE Trans. Acoust. Speech Signal Process..

[13]  F. Asano,et al.  Role of spectral cues in median plane localization. , 1990, The Journal of the Acoustical Society of America.

[14]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.