Quantification of invertebrates on fungal fruit bodies by the use of time‐lapse cameras

[1]  O. Ovaskainen,et al.  Spore production monitoring reveals contrasting seasonal strategies and a trade‐off between spore size and number in wood‐inhabiting fungi , 2023, Functional Ecology.

[2]  Hjalte M. R. Mann,et al.  Accurate detection and identification of insects from camera trap images with deep learning , 2022, bioRxiv.

[3]  Hjalte M. R. Mann,et al.  Moths complement bumblebee pollination of red clover: a case for day-and-night insect surveillance , 2022, Biology Letters.

[4]  L. Boddy,et al.  Beetles provide directed dispersal of viable spores of a keystone wood decay fungus , 2022, bioRxiv.

[5]  N. Tuno,et al.  Fungal spore transport by omnivorous mycophagous slug in temperate forest , 2022, Ecology and evolution.

[6]  D. Gomes Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model? , 2022, PeerJ.

[7]  A. Sverdrup‐Thygeson,et al.  Flattening the curve: approaching complete sampling for diverse beetle communities , 2021, Insect Conservation and Diversity.

[8]  L. Boddy,et al.  DNA metabarcoding reveals host-specific communities of arthropods residing in fungal fruit bodies , 2021, bioRxiv.

[9]  T. Hothorn,et al.  The contribution of insects to global forest deadwood decomposition , 2021, Nature.

[10]  Alexandros Iosifidis,et al.  Deep learning and computer vision will transform entomology , 2020, Proceedings of the National Academy of Sciences.

[11]  Ilia J. Leitch,et al.  Automated video monitoring of insect pollinators in the field. , 2020, Emerging topics in life sciences.

[12]  G. Gramss Aspects Determining the Dominance of Fomitopsis pinicola in the Colonization of Deadwood and the Role of the Pathogenicity Factor Oxalate , 2020, Forests.

[13]  Navinder J. Singh,et al.  Using by‐catch data from wildlife surveys to quantify climatic parameters and timing of phenology for plants and animals using camera traps , 2019, Remote Sensing in Ecology and Conservation.

[14]  H. Schaefer,et al.  A test of camera surveys to study fungus-animal interactions , 2019, Mycoscience.

[15]  M. Cadotte,et al.  Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus! , 2019, Fungal Ecology.

[16]  Abhishek Dutta,et al.  The VGG Image Annotator (VIA) , 2019, ArXiv.

[17]  A. Mazzino,et al.  Timing of fungal spore release dictates survival during atmospheric transport , 2019, Proceedings of the National Academy of Sciences.

[18]  M. Lange,et al.  Gut shuttle service: endozoochory of dispersal-limited soil fauna by gastropods , 2018, Oecologia.

[19]  H. Kauserud,et al.  Wood-inhabiting insects can function as targeted vectors for decomposer fungi. , 2017 .

[20]  P. Jordano,et al.  A general framework for effectiveness concepts in mutualisms. , 2017, Ecology letters.

[21]  Y. Isagi,et al.  Time-lapse photography reveals the occurrence of unexpected bee-pollination in Calanthe izuinsularis, an endangered orchid endemic to the Izu archipelago , 2017 .

[22]  Michał Filipiak,et al.  Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements , 2017 .

[23]  B. Staniec,et al.  Larva of Gyrophaena boleti (Linnaeus, 1758) (Coleoptera: Staphylinidae) — An Obligatory Saproxylic and Mycophagous Species Associated with Fomitopsis pinicola: Notes on Tergal Gland System and Behaviour , 2016, Annales Zoologici.

[24]  Anders Nielsen,et al.  Do Not Divide Count Data with Count Data; A Story from Pollination Ecology with Implications Beyond , 2016, PloS one.

[25]  Torsten Hothorn,et al.  Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[26]  J. Müller,et al.  Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness , 2015 .

[27]  Xavier A. Harrison,et al.  Using observation-level random effects to model overdispersion in count data in ecology and evolution , 2014, PeerJ.

[28]  S. Hågvar,et al.  Succession of beetles (genus Cis) and oribatid mites (genus Carabodes) in dead sporocarps of the red-banded polypore fungus Fomitopsis pinicola , 2013 .

[29]  J. Jakovlev Fungal hosts of mycetophilids (Diptera: Sciaroidea excluding Sciaridae): a review , 2012, Mycology.

[30]  D. Schigel Polypore—beetle associations in Finland , 2011 .

[31]  M. Schroeder,et al.  Long-term priority effects among insects and fungi colonizing decaying wood , 2011, The Journal of animal ecology.

[32]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[33]  Kohmei Kadowaki Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota) , 2010 .

[34]  B. V. Krasutskii Coleoptera associated with Fomitopsis pinicola (Sw.:Fr.) Karst. (Basidiomycetes, Aphyllophorales) in the forests of the Urals and Transurals , 2007, Entomological Review.

[35]  M. Jonsell,et al.  Host selection patterns in insects breeding in bracket fungi , 2004 .

[36]  A. Sverdrup‐Thygeson Can 'continuity indicator species' predict species richness or red-listed species of saproxylic beetles? , 2001, Biodiversity & Conservation.

[37]  I. Gjerde,et al.  Diversity of coleoptera of the bracket fungus Fomitopsis pinicola in a Norwegian spruce forest , 2000, Biodiversity & Conservation.

[38]  M. Jonsson,et al.  Colonization Patterns of Insects Breeding in Wood-Decaying Fungi , 1999, Journal of Insect Conservation.

[39]  S. Hågvar,et al.  The insect fauna associated with carpophores of the fungus Fomitopsis pinicola Karst in a southern Norwegian spruce forest , 1994 .

[40]  E. Schupp Quantity, quality and the effectiveness of seed dispersal by animals , 1993, Vegetatio.

[41]  T. Turchetti,et al.  Possible role of slugs as vectors of the chestnut blight fungus , 1984 .

[42]  R. Lacy Predictability, toxicity, and trophic niche breadth in fungus‐feeding Drosophilidae (Diptera) , 1984 .

[43]  C. L. Kramer,et al.  Periodicity of spore discharge in the Hymenomycetes. , 1970 .

[44]  D. P. Pielou,et al.  THE ARTHROPOD FAUNA ASSOCIATED WITH THE BIRCH BRACKET FUNGUS, POLYPORUS BETULINUS, IN EASTERN CANADA , 1968, The Canadian Entomologist.

[45]  K. Paviour-Smith Some Factors Affecting Numbers of the Fungus Beetle Tetratoma fungorum F. , 1965 .

[46]  S. Hågvar Contribution to the ecology of Gyrophaena boleti (Linnaeus, 1758) (Coleoptera, Staphylinidae) breeding in the pore layer of the fungus Fomitopsis pinicola (Fr.) Karst , 2018 .

[47]  J. Lepš,et al.  Co-occurrence patterns of wood-decaying fungi on Picea abies logs: does Fomitopsis pinicola influence the other species? , 2013 .

[48]  T. Niemelä,et al.  Polypores of western Finnish Lapland and seasonal dynamics of polypore beetles , 2006 .

[49]  D. Schigel,et al.  Beetles in polypores of the Moscow region: checklist and ecological notes , 2004 .

[50]  T. Niemelä,et al.  Polypores and associated beetles of the North Karelian Biosphere Reserve, eastern Finland , 2004 .

[51]  S. Hågvar SAPROXYLIC BEETLES VISITING LIVING SPOROCARPS OF FOMITOPSIS PINICOLA AND FOMES FOMENTARIUS , 1999 .

[52]  S. Hågvar,et al.  SAPROXYLIC BEETLE FAUNA ASSOCIATED WITH LIVING SPOROCARPS OF FOMITOPSIS PINICOLA (FR.) KARST. IN FOUR SPRUCE FORESTS WITH DIFFERENT MANAGEMENT HISTORI ES , 1997 .

[53]  T. Bolger FUNGAL FRUITING BODIES AND THE STRUCTURE OF FUNGUS-MICRO-ARTHROPOD ASSEMBLAGES , 1997 .

[54]  L. Kaila,et al.  Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypore species , 1994 .

[55]  J. Lawrence Host preference in ciid beetles lColeopterac Ciidaer inhabiting the fruiting bodies of Basidiomycetes in North America , 1973 .

[56]  K. Paviour-Smith The fruiting-bodies of macrofungi as habitats for beetles of the family Clidae (Coleoptera). , 1960 .

[57]  Insect fauna compared between six polypore species in a southern Norwegian spruce forest Bj 0 rn 0 kland , 2022 .