Regulation of penicillin biosynthesis in filamentous fungi.

The beta-lactam antibiotic penicillin is one of the mainly used antibiotics for the therapy of infectious diseases. It is produced as end product by some filamentous fungi only, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. The penicillin biosynthesis is catalysed by three enzymes which are encoded by the following three genes: acvA (pcbAB), ipnA (pcbC) and aatA (penDE). The genes are organised into a gene cluster. Although the production of secondary metabolites as penicillin is not essential for the direct survival of the producing organisms, several studies indicated that the penicillin biosynthesis genes are controlled by a complex regulatory network, e.g. by the ambient pH, carbon source, amino acids, nitrogen etc. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Positively acting regulators have been identified such as the pH dependent transcriptional regulator PACC, the CCAAT-binding complex AnCF and seem also to be represented by recessive trans-acting mutations of A. nidulans (prgA1, prgB1, npeE1) and R chrysogenum (carried by mutants Npe2 and Npe3). In addition, repressors like AnBH1 and VeA are involved in the regulation. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of penicillin and can be expected to have a major impact on rational strain improvement programs.

[1]  C. Schofield,et al.  Substrate specificity of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products , 1994 .

[2]  J. Luengo,et al.  Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54-1255: a critical regulatory point in benzylpenicillin biosynthesis. , 1989, The Journal of antibiotics.

[3]  A. Maccabe,et al.  The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. , 1990, The EMBO journal.

[4]  E. Espeso,et al.  Three Binding Sites for the Aspergillus nidulans PacC Zinc-finger Transcription Factor Are Necessary and Sufficient for Regulation by Ambient pH of the Isopenicillin N Synthase Gene Promoter* , 1996, The Journal of Biological Chemistry.

[5]  R. Field,et al.  Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase. , 1991, The Journal of antibiotics.

[6]  J. Baldwin,et al.  Factors affecting the isopenicillin N synthetase reaction. , 1988, The Biochemical journal.

[7]  C M Henriksen,et al.  Purification and characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum. , 1997, The Biochemical journal.

[8]  T. Aldrich,et al.  Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase , 2004, Current Genetics.

[9]  K. D. Macdonald,et al.  Genetics of biosynthesis and overproduction of penicillin. , 1976, Science progress.

[10]  A. Brakhage,et al.  Cloning and Characterization of anAspergillus nidulans Gene Involved in the Regulation of Penicillin Biosynthesis , 1999, Applied and Environmental Microbiology.

[11]  J. Luengo Enzymatic synthesis of hydrophobic penicillins. , 1995, The Journal of antibiotics.

[12]  J. Martín,et al.  A Novel Heptameric Sequence (TTAGTAA) Is the Binding Site for a Protein Required for High Level Expression of pcbAB, the First Gene of the Penicillin Biosynthesis in Penicillium chrysogenum * , 2000, The Journal of Biological Chemistry.

[13]  E. Espeso,et al.  Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: A minor effect of mutations in creB and creC , 1995 .

[14]  G. Turner,et al.  Beta‐lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. , 1990, The EMBO journal.

[15]  G. Turner,et al.  The npgA/cfwA gene encodes a putative 4'-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans , 2003, Current Genetics.

[16]  S. Moroney,et al.  Stepwise ring closure in penicillin biosynthesis. Intitial β-lactam formation , 1984 .

[17]  J. Martín Molecular Control of Expression of Penicillin Biosynthesis Genes in Fungi: Regulatory Proteins Interact with a Bidirectional Promoter Region , 2000, Journal of bacteriology.

[18]  J. Nielsen,et al.  Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. , 2001, Biotechnology and bioengineering.

[19]  A. Brakhage,et al.  Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes , 1995, Journal of bacteriology.

[20]  Y. Aharonowitz,et al.  Enzymatic characterisation of the multifunctional enzyme δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase from Streptomyces clavuligerus , 1992 .

[21]  D. Ramón,et al.  Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the beta-lactam ring in Aspergillus nidulans. , 1987, Gene.

[22]  M. Peñalva,et al.  Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB–pcbC promoter of the penicillin biosynthetic cluster , 1996, Molecular microbiology.

[23]  A. Demain Inhibition of penicillin formation by lysine. , 1957, Archives of biochemistry and biophysics.

[24]  C. Schofield,et al.  Acyl coenzyme A: 6‐aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans , 1990, FEBS letters.

[25]  D. McNabb,et al.  Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. , 1995, Genes & development.

[26]  J. Martín,et al.  The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. , 1993, European journal of biochemistry.

[27]  D. Graur,et al.  Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. , 1990, Molecular biology and evolution.

[28]  Tetsuo Kobayashi,et al.  No Factors Except for the Hap Complex increase the Taka-amylase A Gene Expression by Binding to the CCAAT Sequence in the Promoter Region , 2001, Bioscience, biotechnology, and biochemistry.

[29]  J. Vater,et al.  Multifunctional Peptide Synthetases. , 1997, Chemical reviews.

[30]  A. Moya,et al.  Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  J. Martín,et al.  Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. , 1993, The Journal of biological chemistry.

[32]  Kogekar Rg,et al.  Biosynthesis of penicillin in vitro: purification & properties of 'phenyl/phenoxyacetic acid activating enzyme'. , 1982 .

[33]  H. Miyashita,et al.  Organization and expression inPseudomonas putida of the gene cluster involved in cephalosporin biosynthesis fromLysobacter lactamgenus YK90 , 1996, Applied Microbiology and Biotechnology.

[34]  K. Matsuyama,et al.  Molecular cloning of acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase cDNA from Acremonium chrysogenum: sequence and expression of catalytic activity in yeast. , 1992, Biochemical and biophysical research communications.

[35]  E. Espeso,et al.  The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid‐ and alkaline‐expressed genes by ambient pH. , 1995, The EMBO journal.

[36]  J. Heim,et al.  The Biosynthesis of Sulfur-Containing β-Lactam Antibiotics , 1987 .

[37]  G. Marzluf,et al.  Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum , 2004, Current Genetics.

[38]  J. Visser,et al.  Identification, cloning and analysis of theAspergillus niger genepacC, a wide domain regulatory gene responsive to ambient pH , 1996, Molecular and General Genetics MGG.

[39]  J. Martín,et al.  The Production of Cephalosporin C by Acremonium chrysogenum is Improved by the Intracellular Expression of a Bacterial Hemoglobin , 1993, Bio/Technology.

[40]  A. Aoyama,et al.  The Aspergillus nidulans CCAAT-binding factor AnCP/AnCF is a heteromeric protein analogous to the HAP complex of Saccharomyces cerevisiae , 1998, Molecular and General Genetics MGG.

[41]  G. Marzluf,et al.  nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Liu,et al.  The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production , 2002, Molecular Genetics and Genomics.

[43]  J. Barredo,et al.  Reduced Function of a Phenylacetate-Oxidizing Cytochrome P450 Caused Strong Genetic Improvement in Early Phylogeny of Penicillin-Producing Strains , 2001, Journal of bacteriology.

[44]  Yager Ln Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. , 1992 .

[45]  A. Demain,et al.  A pure enzyme catalyzing penicillin biosynthesis. , 1984, Science.

[46]  M. Davis,et al.  HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. , 1999, Fungal genetics and biology : FG & B.

[47]  J. Bennett,et al.  What's in a Name?-Microbial Secondary Metabolism , 1989 .

[48]  G. Turner,et al.  Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster , 1997, Journal of Industrial Microbiology and Biotechnology.

[49]  A. Brakhage,et al.  The Aspergillus nidulans penicillin-biosynthesis gene aat (penDE) is controlled by a CCAAT-containing DNA element. , 1996, European journal of biochemistry.

[50]  E. Espeso,et al.  Ambient pH Signaling Regulates Nuclear Localization of the Aspergillus nidulans PacC Transcription Factor , 2001, Molecular and Cellular Biology.

[51]  I. Borovok,et al.  Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands. , 1996, Biochemistry.

[52]  J. Martín,et al.  The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Arst Regulation of Gene Expression by pH , 1996 .

[54]  M. Peñalva,et al.  Overexpression of two penicillin structural genes in Aspergillus nidulans , 1995, Molecular and General Genetics MGG.

[55]  A. Brakhage,et al.  The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GATA sites , 2001, Archives of Microbiology.

[56]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Wen-Hsiung Li,et al.  Evolution of DNA Sequences , 1985 .

[58]  Geoffrey J. Barton,et al.  Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes , 1995, Nature.

[59]  M. Marahiel,et al.  Design and application of multimodular peptide synthetases. , 1999, Current opinion in biotechnology.

[60]  Jens Nielsen,et al.  Physiological Engineering Aspects Of Penicillium Chrysogenum , 1997 .

[61]  A. Demain,et al.  δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valine Synthetase, the Multienzyme Integrating the Four Primary Reactions in β-Lactam Biosynthesis, as a Model Peptide Synthetase , 1993, Bio/Technology.

[62]  Jae-Hyuk Yu,et al.  Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα protein‐dependent signaling pathway , 1997, The EMBO journal.

[63]  A. Aoyama,et al.  An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters , 1997, Molecular and General Genetics MGG.

[64]  F. Marinelli,et al.  Rare genera of actinomycetes as potential producers of new antibiotics , 2000, Antonie van Leeuwenhoek.

[65]  Jiujiang Yu,et al.  Toxins of filamentous fungi. , 2002, Chemical immunology.

[66]  H. Schwab,et al.  Molecular characterization and functional analysis in Aspergillus nidulans of the 5'-region of the Penicillium chrysogenum isopenicillin N synthetase gene. , 1991, Journal of biotechnology.

[67]  N. Tsukagoshi,et al.  Aspergillus nidulans nuclear proteins bind to a CCAAT element and the adjacent upstream sequence in the promoter region of the starch-inducible Taka-amylase A gene , 1993, Molecular and General Genetics MGG.

[68]  P. Skatrud,et al.  Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. , 1986, Gene.

[69]  M. Peñalva,et al.  A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway , 1995, Journal of bacteriology.

[70]  M. Peñalva,et al.  Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements , 1993, Molecular microbiology.

[71]  J. Martín,et al.  Glucose represses formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum , 1986, Journal of bacteriology.

[72]  H. Arst,et al.  pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. , 2003, Trends in genetics : TIG.

[73]  M. Davis,et al.  ThehapC gene ofAspergillus nidulans is involved in the expression of CCAAT-containing promoters , 1996, Molecular and General Genetics MGG.

[74]  Axel A. Brakhage,et al.  Molecular Regulation of β-Lactam Biosynthesis in Filamentous Fungi , 1998, Microbiology and Molecular Biology Reviews.

[75]  G. Turner,et al.  Biotechnical Genetics of Antibiotic Biosynthesis , 1995 .

[76]  M. Peñalva,et al.  Isolation and characterization of the acetyl-CoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. , 1992, The Journal of biological chemistry.

[77]  E. Espeso,et al.  On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction , 2000, The EMBO journal.

[78]  J. Sutherland,et al.  Amino-acid substitutions in the cleavage site of acyl-coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum: effect on proenzyme cleavage and activity. , 1995, Gene.

[79]  C. Schleissner,et al.  Molecular Cloning and Expression in Different Microbes of the DNA Encoding Pseudomonas putida U Phenylacetyl-CoA Ligase: , 1996, The Journal of Biological Chemistry.

[80]  G. Turner,et al.  δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillusnidulans , 1996, Molecular and General Genetics MGG.

[81]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .

[82]  J. Baldwin,et al.  Purification of isopenicillin N synthetase. , 1984, The Biochemical journal.

[83]  R F Doolittle,et al.  Evolution by acquisition: the case for horizontal gene transfers. , 1992, Trends in biochemical sciences.

[84]  H. Arst,et al.  Carbon catabolite repression in Aspergillos nidulans. , 1975, European journal of biochemistry.

[85]  K. Jekosch,et al.  Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production , 2000, Current Genetics.

[86]  J. Martín,et al.  The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum , 1991, Molecular microbiology.

[87]  M. J. Johnson,et al.  The effect of the carbohydrate nutrition on penicillin production by Penicillium chrysogenum Q-176. , 1953, Applied microbiology.

[88]  D. Hopwood,et al.  Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin inStreptomyces coelicolor A3(2) , 1986, Molecular and General Genetics MGG.

[89]  M. Marahiel,et al.  Functional characterization of 4'-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5. , 2002, FEMS microbiology letters.

[90]  J. Martín,et al.  Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum , 1987, Antimicrobial Agents and Chemotherapy.

[91]  M. Davis,et al.  The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. , 1998, European journal of biochemistry.

[92]  J Villadsen,et al.  Metabolic flux distributions in Penicillium chrysogenum during fed‐batch cultivations , 1995, Biotechnology and bioengineering.

[93]  D. Shiffman,et al.  Microbial isopenicillin N synthase genes: structure, function, diversity and evolution. , 1990, Trends in biotechnology.

[94]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[95]  A. Brakhage,et al.  Regulation of the Aspergillus nidulansPenicillin Biosynthesis Gene acvA (pcbAB) by Amino Acids: Implication for Involvement of Transcription Factor PACC , 1998, Applied and Environmental Microbiology.

[96]  T. Phillips,et al.  G‐protein signalling mediates differential production of toxic secondary metabolites , 2000, Molecular microbiology.

[97]  G. Marzluf,et al.  DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing, and orientation of GATA core elements and their flanking sequences upon NIT2 binding. , 1994, Biochemistry.

[98]  J. Martín,et al.  Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains , 1991, Journal of bacteriology.

[99]  Kyung Kim,et al.  The veA gene activates sexual development in Aspergillus nidulans. , 2002, Fungal genetics and biology : FG & B.

[100]  J. Martín,et al.  Cloning, characterization of the acyl-CoA : 6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene , 1990, Molecular and General Genetics MGG.

[101]  U. Kück,et al.  The Fungal CPCR1 Protein, Which Binds Specifically to β-Lactam Biosynthesis Genes, Is Related to Human Regulatory Factor X Transcription Factors* , 2000, The Journal of Biological Chemistry.

[102]  A. Driessen,et al.  Penicillium chrysogenum Takes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion , 1995, Applied and environmental microbiology.

[103]  G. Cohen,et al.  The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis , 1994, Journal of bacteriology.

[104]  K. D. Macdonald,et al.  The genetics of Aspergillus nidulans. , 1953, Advances in genetics.

[105]  F. Lottspeich,et al.  Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. , 2002, Journal of molecular biology.

[106]  G. Braus,et al.  Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans , 2002, Current Genetics.

[107]  A. Brakhage,et al.  AnCF, the CCAAT Binding Complex of Aspergillus nidulans, Contains Products of the hapB,hapC, and hapE Genes and Is Required for Activation by the Pathway-Specific Regulatory GeneamdR , 1999, Molecular and Cellular Biology.

[108]  A. M. Calvo,et al.  The Expression of Sterigmatocystin and Penicillin Genes in Aspergillus nidulans Is Controlled by veA, a Gene Required for Sexual Development , 2003, Eukaryotic Cell.

[109]  U. Kück,et al.  Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions , 1994, Applied Microbiology and Biotechnology.

[110]  C. Robinson,et al.  Investigations into the post-translational modification and mechanism of isopenicillin N:acyl-CoA acyltransferase using electrospray mass spectrometry. , 1993, The Biochemical journal.

[111]  G. Marzluf,et al.  A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression , 1994, Applied and environmental microbiology.

[112]  J. Martín,et al.  Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. , 1992, Annual review of microbiology.

[113]  C. A. Hondel,et al.  Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker , 2004, Applied Microbiology and Biotechnology.

[114]  E. Espeso,et al.  Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. , 1995, Genes & development.

[115]  P. Liras,et al.  Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. , 1989, Annual review of microbiology.

[116]  G. Turner,et al.  The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. , 1990, The EMBO journal.

[117]  G. Turner,et al.  Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose , 1992, Journal of bacteriology.

[118]  J. Martín,et al.  The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. , 1990, The Journal of biological chemistry.

[119]  M. Marahiel,et al.  An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. , 1991, The Journal of biological chemistry.

[120]  T. Littlejohn,et al.  Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans , 1992, Molecular and General Genetics MGG.

[121]  E. Espeso,et al.  Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans , 1992, Molecular microbiology.

[122]  E. Espeso,et al.  Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps , 2002, The EMBO journal.

[123]  J. Baldwin,et al.  The biosynthesis of penicillins and cephalosporins. , 1988, Natural product reports.

[124]  A. Brakhage,et al.  Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans , 1996, Journal of bacteriology.

[125]  H. Arst,et al.  pH regulation of penicillin production in Aspergillus nidulans. , 1991, FEMS microbiology letters.

[126]  Transcript analysis of penicillin genes from Penicillium chrysogenum , 2004, Current Genetics.

[127]  P. Skatrud,et al.  Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium , 1985, Nature.

[128]  David J. Smith,et al.  Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin , 1989, Molecular and General Genetics MGG.

[129]  V. J. Chen,et al.  Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans , 1988, Journal of bacteriology.

[130]  G. Marzluf,et al.  Genetic regulation of nitrogen metabolism in the fungi , 1997, Microbiology and molecular biology reviews : MMBR.

[131]  G. Turner,et al.  Expression of genes for the biosynthesis of penicillin , 1993 .

[132]  T. Stein,et al.  The Multiple Carrier Model of Nonribosomal Peptide Biosynthesis at Modular Multienzymatic Templates* , 1996, The Journal of Biological Chemistry.

[133]  J. Hajdu,et al.  Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation , 1997, Nature.

[134]  J. Gagnon,et al.  N‐terminal amino acid sequence and some properties of isopenicillin‐N synthetase from Cephalosporium acremonium , 1985, FEBS letters.

[135]  G. Marzluf,et al.  Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes , 1995, Current Genetics.

[136]  S. Queener Molecular biology of penicillin and cephalosporin biosynthesis , 1990, Antimicrobial Agents and Chemotherapy.

[137]  M. Hynes,et al.  The amdR product and a CCAAT-binding factor bind to adjacent, possibly overlapping DNA sequences in the promoter region of the Aspergillus nidulans amdS gene. , 1991, Nucleic acids research.

[138]  A. Brakhage,et al.  The Aspergillus nidulans multimeric CCAAT binding complex AnCF is negatively autoregulated via its hapB subunit gene. , 2001, Journal of molecular biology.

[139]  M. Thoma,et al.  Constant dissolved oxygen concentrations in cephalosporin C fermentation: Applicability of different controllers and effect on fermentation parameters , 1987, Applied Microbiology and Biotechnology.

[140]  M. Peñalva,et al.  Disruption of phacA, an Aspergillus nidulans Gene Encoding a Novel Cytochrome P450 Monooxygenase Catalyzing Phenylacetate 2-Hydroxylation, Results in Penicillin Overproduction* , 1999, The Journal of Biological Chemistry.

[141]  J. Sutherland,et al.  The requirement for subunit interaction in the production of Penicillium chrysogenum acyl-coenzyme A:isopenicillin N acyltransferase in Escherichia coli. , 1993, Gene.

[142]  R. Bovenberg,et al.  Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. , 1991, Journal of biotechnology.

[143]  C. Kubicek,et al.  Regulation of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the α-aminoadipate pool size , 1989 .

[144]  A. Maccabe,et al.  Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. , 1991, The Journal of biological chemistry.

[145]  J. Martín,et al.  The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase , 1992, Journal of bacteriology.

[146]  R. Davies,et al.  The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. , 1990, The EMBO journal.

[147]  G. Marzluf,et al.  NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters , 1995, Current Genetics.

[148]  J. Martín,et al.  Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence , 2004, Applied Microbiology and Biotechnology.

[149]  M. Fleming,et al.  Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli , 1990, Journal of bacteriology.

[150]  J. Sutherland,et al.  On the production of α,β‐heterodimeric acyl‐coenzyme A: isopenicillin N‐acyltransferase of Penicillium chrysogenum , 1993 .