Lévy Process with Substable Increments via Generalized Convolution

[1]  J. Misiewicz,et al.  Weak Lévy-Khintchine representation for weak infinite divisibility , 2014, 1407.4097.

[2]  J. Misiewicz,et al.  Lévy processes and stochastic integrals in the sense of generalized convolutions , 2013, 1312.4083.

[3]  A. Kula,et al.  The Urbanik generalized convolutions in the non-commutative probability and a forgotten method of constructing generalized convolution , 2012, Proceedings - Mathematical Sciences.

[4]  B. H. Jasiulis Limit Property for Regular and Weak Generalized Convolution , 2010 .

[5]  J. Misiewicz,et al.  On the connections between weakly stable and pseudo-isotropic distributions , 2008 .

[6]  J. Misiewicz,et al.  On Weak Generalized Stability and (c,d)-Pseudostable Random Variables via Functional Equations , 2008, 0810.5285.

[7]  J. Misiewicz Weak stability and generalized weak convolution for random vectors and stochastic processes , 2006, math/0608225.

[8]  J. Misiewicz,et al.  On (c,p)-pseudostable Random Variables , 2005 .

[9]  A. Panorska Generalized convolutions on R with applications to financial modeling , 1999 .

[10]  T. Kozubowski,et al.  On moments and tail behavior of v-stable random variables , 1996 .

[11]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[12]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[13]  V. Vol'kovich On symmetric stochastic convolutions , 1992 .

[14]  V. Vol'kovich Infinitely divisible distributions in algebras with stochastic convolution , 1988 .

[15]  H. Ko An introduction to probability theory and its applications, Vol. II: by William Feller. 626 pages, 6 × 9 inches, New York, John Wiley and Sons, Inc., 1966. Price $12.00 , 1967 .

[16]  J. Kingman,et al.  Random walks with spherical symmetry , 1963 .

[17]  Gideon Schechtman,et al.  Geometric aspects of functional analysis : Israel Seminar 2006-2010 , 2012 .

[18]  K. Oleszkiewicz,et al.  Classes of measures closed under mixing and convolution. Weak stability , 2005 .

[19]  A. Panorska Rate of Convergence in the Central Limit Theorem for Generalized Convolutions , 1994 .

[20]  K. Urbanik,et al.  Transformations preserving weak stability , 1986 .

[21]  K Urbanik Generalized convolutions , 1985 .

[22]  K. Urbanik Generalized convolutions II , 1973 .