A State-Space Approach to the Synthesis of Random Vertical and Crosslevel Rail Irregularities

The work described in this paper provides a convenient method to generate random vertical and crosslevel irregularities when their time histories are required as inputs to a numerical simulation. The solution begins with mathematical models of vertical and crosslevel power spectral densities (PSDs) representing PSDs of track classes 4, 5, and 6. The method implements state-space models of shape filters whose frequency response magnitude squared matches the desired PSDs. The shape filters give time histories possessing the proper spectral content when driven by white noise inputs. The state equations are solved directly under the assumption that the white noise inputs are constant between time steps. Thus, the state transition matrix and the forcing matrix are obtained in closed form