Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) study of phosphorous oxychloride (POCl3) dissociation at 235 nm: Dynamics of Cl(2Pj) formation

[1]  K. Houk,et al.  Computational methods to calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles. , 2011, The journal of physical chemistry. A.

[2]  H. Upadhyaya,et al.  Dynamics of Cl (2Pj) atom formation in the photodissociation of fumaryl chloride (ClCO - CH = CH - COCl) at 235 nm: a resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) study. , 2011, The journal of physical chemistry. A.

[3]  King‐Chuen Lin,et al.  I2 molecular elimination in single-photon dissociation of CH2I2 at 248 nm by using cavity ring-down absorption spectroscopy. , 2011, The Journal of chemical physics.

[4]  T. Bandyopadhyay,et al.  Photodissociation dynamics of phosphorus trichloride (PCl3) at 235 nm using resonance enhanced multiphoton ionization (REMPI) with time-of-flight (TOF) mass spectrometry. , 2010, The journal of physical chemistry. A.

[5]  Jiaxu Zhang,et al.  Theoretical investigation of mechanisms for the gas-phase unimolecular decomposition of DMMP. , 2009, The journal of physical chemistry. A.

[6]  E. A. Seregina,et al.  ACTIVE MEDIA: Population kinetics of laser levels of neodymium ions in POCl3---SnCl4---235UO22+---Nd3+ excited by fission fragments , 2009 .

[7]  J. Simons,et al.  Nature of PO bonds in phosphates. , 2009, The journal of physical chemistry. A.

[8]  Claude Y. Legault,et al.  Theoretical bond dissociation energies of halo-heterocycles: trends and relationships to regioselectivity in palladium-catalyzed cross-coupling reactions. , 2009, Journal of the American Chemical Society.

[9]  A. Modelli,et al.  Are there pi* shape resonances in electron scattering from phosphate groups? , 2008, The journal of physical chemistry. A.

[10]  T. Märk,et al.  Electron attachment to POCl3: measurement and theoretical analysis of rate constants and branching ratios as a function of gas pressure and temperature, electron temperature, and electron energy. , 2006, The Journal of chemical physics.

[11]  L. Christophorou,et al.  Fundamental Electron Interactions with Plasma Processing Gases , 2003 .

[12]  P. D’yachenko,et al.  LASERS: Model of a nuclear --- optically --- pumped liquid laser , 2003 .

[13]  E. A. Seregina,et al.  Model of a nuclear-pumped liquid optical quantum amplifier , 2001 .

[14]  W. B. Knighton,et al.  Effect of pressure and temperature on the competition between nondissociative and dissociative electron attachment to POCl3 , 2000 .

[15]  Salman Rosenwaks,et al.  NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates , 2000 .

[16]  S. North,et al.  Photodissociation dynamics of CH2BrCl studied using resonance enhanced multiphoton ionization (REMPI) with time-of-flight mass spectrometry , 1999 .

[17]  J. Huber,et al.  Photodissociation of ClNO2 at 235 nm , 1999 .

[18]  Y. Lee,et al.  The near ultraviolet dissociation dynamics of azomethane: Correlated V-T energy disposal and product appearance times , 1998 .

[19]  W. B. Knighton,et al.  Electron attachment to PCl3 and POCl3, 296–552 K , 1998 .

[20]  G. Hall,et al.  Resonance enhanced multiphoton ionization time-of-flight study of CF2I2 photodissociation , 1998 .

[21]  O. Vasyutinskii,et al.  Observation of Coherent and Incoherent Dissociation Mechanisms in the Angular Distribution of Atomic Photofragment Alignment , 1998 .

[22]  S. North,et al.  Nonintuitive Asymmetry in the Three-Body Photodissociation of CH3COCN , 1997 .

[23]  P. Houston,et al.  SPEED-DEPENDENT ANISOTROPY PARAMETERS IN THE UV PHOTODISSOCIATION OF OZONE , 1997 .

[24]  O. Korobeinichev,et al.  Destruction chemistry of organophosphorus compounds in hydrogen-oxygen flames , 1997 .

[25]  M. Kawasaki,et al.  ION IMAGING OF THE PHOTODISSOCIATION OF CHLORINE-CONTAINING MOLECULES , 1996 .

[26]  J. Syage Photofragment imaging by sections for measuring state‐resolved angle‐velocity differential cross sections , 1996 .

[27]  R. Field,et al.  Electronic control of the spin–orbit branching ratio in the photodissociation and predissociation of HCl , 1995 .

[28]  P. Houston,et al.  Detection of PO, Cl and P from the photodissociation of POCl3 at 193 nm , 1995 .

[29]  Declan G Gilheany,et al.  No d Orbitals but Walsh Diagrams and Maybe Banana Bonds: Chemical Bonding in Phosphines, Phosphine Oxides, and Phosphonium Ylides. , 1994, Chemical reviews.

[30]  James A. Baker,et al.  Decontamination of chemical warfare agents , 1992 .

[31]  J. Horton,et al.  Anion and cation chemistry of phosphoryl chloride as an electron scavenger in a fuel-rich, methane—oxygen flame , 1992 .

[32]  G. Flynn,et al.  Tunable diode laser probe of chlorine atoms produced from the photodissociation of a number of molecular precursors , 1991 .

[33]  F. Hartley The Chemistry of Organophosphorus Compounds , 1990 .

[34]  E. Hintsa,et al.  Photodissociation of 2‐bromoethanol and 2‐chloroethanol at 193 nm , 1990 .

[35]  J. Hurst,et al.  Laser‐assisted chemical etching of copper , 1988 .

[36]  A. Miziolek,et al.  State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate , 1986 .

[37]  J. Huber,et al.  Sub‐Doppler laser‐induced fluorescence measurements of the velocity distribution and rotational alignment of NO photofragments , 1986 .

[38]  D. Hess,et al.  Reaction of atomic and molecular chlorine with aluminum , 1986 .

[39]  Rosario C. Sausa,et al.  Lif studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate , 1985 .

[40]  R. M. Jordan,et al.  Design for improved resolution in a time‐of‐flight mass spectrometer using a supersonic beam and laser ionization source , 1985 .

[41]  C. Wittig,et al.  Nascent PO(X 2Π) E,V,R,T excitations from collision‐free IR laser photolysis: Specificity toward the PO(X 2Π1/2) spin‐orbit state , 1985 .

[42]  R. Zare,et al.  State‐selected photodissociation dynamics: Complete characterization of the OH fragment ejected by the HONO Ã state , 1984 .

[43]  Curt Wittig,et al.  Two-Frequency Two-Photon Ionization of Nascent PO(X2 Pi) from the Collision-Free IR Photolysis of Dimethyl Methylphosphonate, , 1983 .

[44]  C. Rettner,et al.  Laser two-photon ionization of aniline in a molecular beam and the bulk gas phase , 1979 .

[45]  A. Tuck Molecular beam studies of ethyl nitrite photodissociation , 1977 .

[46]  B. Mathur,et al.  Negative ions from phosphorus halides due to cesium charge exchange , 1976 .

[47]  M. Molina,et al.  Chlorofluoromethanes in the Environment , 1975 .

[48]  C. Klots Thermochemical and kinetic information from metastable decompositions of ions , 1973 .

[49]  C. Brecher,et al.  Spectroscopy and chemistry of aprotic neodymium(3+) ion laser liquids , 1973 .

[50]  L. J. Radziemski,et al.  Wavelengths, Energy Levels, and Analysis of Neutral Atomic Chlorine (Cl i) , 1969 .

[51]  H. B. Palmer,et al.  Electronic emission spectra of phosphorus oxyhalide radicals , 1968 .

[52]  I. Mclaren,et al.  TIME-OF-FLIGHT MASS SPECTROMETER WITH IMPROVED RESOLUTION , 1955 .